Abstract

The integration of additive manufacturing (AM) processes in many industries has led to the need for AM education and training, particularly on design for AM (DfAM). To meet this growing need, several academic institutions have implemented educational interventions, especially project- and problem-based, for AM education; however, limited research has explored how the choice of the problem statement influences the design outcomes of a task-based AM/DfAM intervention. This research explores this gap in the literature through an experimental study with 175 undergraduate engineering students. Specifically, the study compared the effects of restrictive and dual (restrictive and opportunistic) DfAM education, when introduced through design tasks that differed in the explicit use of design objectives and functional and manufacturing constraints in defining them. The effects of the intervention were measured through (1) changes in participant DfAM self-efficacy, (2) participants' self-reported emphasis on DfAM, and (3) the creativity of participants' design outcomes. The results show that the choice of the design task has a significant effect on the participants' self-efficacy with, and their self-reported emphasis on, certain DfAM concepts. The results also show that the design task containing explicit constraints and objectives results in participants generating ideas with greater uniqueness compared with the design task with fewer explicit constraints and objectives. These findings highlight the importance of the chosen problem statement on the outcomes of a DfAM educational intervention, and future work is also discussed.

References

1.
Manyika
,
J.
,
Chui
,
M.
,
Bughin
,
J.
,
Dobbs
,
R.
,
Bisson
,
P.
, and
Marrs
,
A.
,
May 2013
, Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy, McKinsey Global Institute (MGI), p.
176
.
2.
Glass
,
R. L.
,
Hague
,
R.
,
Campbell
,
I.
, and
Dickens
,
P.
,
2003
, “
Implications on Design of Rapid Manufacturing
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
217
(
1
), pp.
25
30
.
3.
Thomas-Seale
,
L. E. J.
,
Kirkman-Brown
,
J. C.
,
Attallah
,
M. M.
,
Espino
,
D. M.
, and
Shepherd
,
D. E. T.
,
2018
, “
The Barriers to the Progression of Additive Manufacture: Perspectives From UK Industry
,”
Int. J. Prod. Econ.
,
198
, pp.
104
118
. 10.1016/j.ijpe.2018.02.003
4.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
, pp.
166
178
. 10.1016/j.addma.2016.08.002
5.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies
, Vol.
17
,
Springer
,
New York
.
6.
Klahn
,
C.
,
Leutenecker
,
B.
, and
Meboldt
,
M.
,
2015
, “
Design Strategies for the Process of Additive Manufacturing
,”
Procedia CIRP
,
36
, pp.
230
235
. 10.1016/j.procir.2015.01.082
7.
Columbus
,
L.
,
2014
, Demand For 3D Printing Skills is Accelerating Globally, Forbes.
8.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
,
Identifying the Future of Freeform Processing
,
The University of Texas at Austin Laboratory for Freeform Fabrication Advanced Manufacturing Center
,
Austin TX
.
9.
Williams
,
C. B.
,
Simpson
,
T. W.
, and
Michael
,
H.
,
2015
, “
Advancing the Additive Manufacturing Workforce: Summary and Recommendations From a NSF Workshop
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
11
.
10.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
Teaching Design Freedom: Exploring the Effects of Design for Additive Manufacturing Education on the Cognitive Components of Students’ Creativity
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, pp.
1
14
.
11.
Kumke
,
M.
,
Watschke
,
H.
,
Hartogh
,
P.
,
Bavendiek
,
A. K.
, and
Vietor
,
T.
,
2018
, “
Methods and Tools for Identifying and Leveraging Additive Manufacturing Design Potentials
,”
Int. J. Interact. Des. Manuf.
,
12
(
2
), pp.
481
493
. 10.1007/s12008-017-0399-7
12.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
(
1
), pp.
632
637
. 10.1016/j.procir.2012.07.108
13.
Pallari
,
J. H. P.
,
Dalgarno
,
K. W.
, and
Woodburn
,
J.
,
2010
, “
Mass Customization of Foot Orthoses for Rheumatoid Arthritis Using Selective Laser Sintering
,”
IEEE Trans. Biomed. Eng.
,
57
(
7
), pp.
1750
1756
. 10.1109/TBME.2010.2044178
14.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
15.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics
,
31
(
6
), p.
1
. 10.1145/2366145.2366149
16.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Computer-Aided Des. Appl.
,
5
(
5
), pp.
686
696
. 10.3722/cadaps.2008.686-696
17.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
1–6
), pp.
585
594
. 10.1080/16864360.2007.10738493
18.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
MacHado
,
B. I.
,
Hernandez
,
D. H.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and
Bracke
,
J.
,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
368
(
1917
), pp.
1999
2032
. 10.1098/rsta.2010.0010
19.
De Laurentis
,
K. J.
,
Kong
,
F. F.
, and
Mavroidis
,
C.
,
2002
, “
Procedure for Rapid Fabrication of Non-Assembly Mechanisms With Embedded Components
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Canada
,
Sept. 29–Oct. 2
, pp.
1
7
.
20.
Kaweesa
,
D. V.
,
Spillane
,
D. R.
, and
Meisel
,
N. A.
, “
Investigating the impact of functionally graded materials on fatigue life of material jetted specimens
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 7–9
, pp.
578
592
.
21.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
Comput.-Aided Des.
,
65
, pp.
1
10
. 10.1016/j.cad.2015.03.001
22.
Zhu
,
Z.
,
Dhokia
,
V.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2016
, “
Investigation of Part Distortions as a Result of Hybrid Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
23
32
. 10.1016/j.rcim.2015.06.001
23.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti-6Al-4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
. 10.1016/j.actamat.2014.12.054
24.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
25.
Boschetto
,
A.
, and
Bottini
,
L.
,
2016
, “
Design for Manufacturing of Surfaces to Improve Accuracy in Fused Deposition Modeling
,”
Rob. Comput.-Integr. Manuf.
,
37
, pp.
103
114
. 10.1016/j.rcim.2015.07.005
26.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2016
, “
Finishing of Fused Deposition Modeling Parts by CNC Machining
,”
Rob. Comput.-Integr. Manuf.
,
41
, pp.
92
101
. 10.1016/j.rcim.2016.03.004
27.
Fahad
,
M.
, and
Hopkinson
,
N.
,
2012
, “
A New Benchmarking Part for Evaluating the Accuracy and Repeatability of Additive Manufacturing (AM) Processes
,”
2nd International Conference on Mechanical, Production, and Automobile Engineering
,
Singapore
,
Apr. 28–29
, pp.
234
238
.
28.
Prince
,
M. J.
, and
Felder
,
R. M.
,
2006
, “
Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases
,”
J. Eng. Educ.
,
95
(
2
), pp.
123
138
. 10.1002/j.2168-9830.2006.tb00884.x
29.
American Society for Engineering Education
,
2009
, Creating a Culture for Scholarly and Systematic Innovation in Engineering Education - Phase 1 Report, American Society for Engineering Education, Washington DC.
30.
Helge Bøhn
,
J.
,
1997
, “
Integrating Rapid Prototyping Into the Engineering Curriculum—A Case Study
,”
Rapid Prototyping J.
,
3
(
1
), pp.
32
37
. 10.1108/13552549710169264
31.
Jonassen
,
D. H.
,
2000
, “
Toward a Design Theory of Problem Solving
,”
Educ. Technol. Res. Dev.
,
48
(
4
), pp.
63
85
. 10.1007/BF02300500
32.
White
,
H. B.
, III
,
2001
, “Getting Started in Problem-based Learning,”
The Power of Problem-based Learning
, 1st ed.,
B. J.
Duch
,
S. E.
Groh
, and
D. E.
Allen
, eds.,
Stylus Publishing
,
Sterling, VA
.
33.
Weiss
,
R. E.
,
2003
, “
Designing Problems to Promote Higher-Order Thinking
,”
New Directions Teach. Learn.
,
2003
(
95
), pp.
25
31
. 10.1002/tl.109
34.
Gagné
,
R. M.
,
1980
, “
Learnable Aspects of Problem Solving
,”
Educ. Psychol.
,
15
(
2
), pp.
84
92
. 10.1080/00461528009529218
35.
National Academy of Engineering
,
2017
, “
National Academy of Engineering Grand Challenges for Engineers
,” pp.
19
22
.
36.
National Academy of Sciences, National Academy of Engineering, and Institute of Medicine
,
2007
,
Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future
,
National Academies Press
.
37.
National Science Board
,
2003
,
The Science and Engineering Workforce: Realizing America’s Potential
.
38.
National Academy of Engineering
,
2005
,
Educating the Engineer of 2020: Adapting Engineering Education to the New Century
,
National Academies Press
,
Washington, DC
.
39.
National Academy of Engineering
,
2004
,
The Engineer of 2020: Visions of Engineering in the New Century
,
The National Academies Press
,
Washington, DC
.
40.
Grasso
,
D.
, and
Burkins
,
M. B.
,
2010
,
Holistic Engineering Education: Beyond Technology
,
Springer
,
New York
.
41.
Barrett
,
C. R.
,
2006
,
Reforming Engineering Education
,
National Academy of Engineering
,
Washington, DC
.
42.
Melsa
,
J. L.
,
Rajala
,
S. A.
,
Mohsen
,
J. P.
,
Jamieson
,
L. H.
,
Lohmann
,
J. R.
,
Melsa
,
J. L.
,
Rajala
,
S. A.
, and
Mohsen
,
J. P.
,
2009
, “
Creating a Culture for Scholarly and Systematic Innovation in Engineering Education
,”
J. Eng. Educ.
,
98
(
3
), pp.
209
209
. 10.1002/j.2168-9830.2009.tb01019.x
43.
Mayer
,
R. E.
,
1992
,
Thinking, Problem Solving, Cognition
,
WH Freeman/Times Books/Henry Holt & Co
.
44.
Mayer
,
R. E.
, and
Wittrock
,
M. C.
,
2004
,
Handbook of Educational Psychology
,
D. C.
Berliner
,
R. C.
Calfee
, eds.,
Routledge
,
New York and London
.
45.
Bransford
,
J. D.
,
Brown
,
A. L.
, and
Cocking
,
R. R.
,
2000
, “Learning and Transfer,”
How People Learn: Brain, Mind, Experience, and School: Expanded Edition
,
The National Academies Press.
,
Washington, DC
. https://doi.org/10.17226/9853
46.
Detterman
,
D. K.
, and
Sternberg
,
R. J.
,
1993
,
Transfer on Trial: Intelligence, Cognition, and Instruction
,
Ablex Publishing
,
Westport, CT
.
47.
McKeough
,
A.
,
Lupart
,
J. L.
, and
Marini
,
A.
,
2013
,
Teaching for Transfer: Fostering Generalization in Learning
,
Routledge
,
New York
.
48.
Mayer
,
R. E.
,
1995
, “Teaching and Testing for Problem Solving,”
International Encyclopedia of Teaching and Teacher Education.
,
L. W.
Anderson
, ed.,
Elsevier Science Inc.
,
Tarrytown, NY
.
49.
Haskell
,
R. E.
,
2000
,
Transfer of Learning: Cognition and Instruction
,
Academic Press
,
New York
.
50.
Mayer
,
R. E.
,
2002
, “
Rote Versus Meaningful Learning
,”
Theory Pract.
,
41
(
4
), pp.
226
232
. 10.1207/s15430421tip4104_4
51.
Mayer
,
R. E.
,
2001
, “Changing Conceptions of Learning: A Century of Progress in the Scientific Study of Education.”
Education Across a Century: The Centennial Volume—One Hundredth Yearbook of the National Society for the Study of Education
,
National Society for the Study of Education
,
Chicago
, pp.
34
75
.
52.
Bloom
,
B. S.
,
Engelhart
,
M. D.
,
Furst
,
E. J.
,
Hill
,
W. H.
, and
Krathwohl
,
D. R.
,
1956
,
Taxonomy of Educational Objectives
,
Longmans, Green and Co Ltd.
,
London, WI
.
53.
Felder
,
R.
, and
Prince
,
M.
,
2007
, “
The Case for Inductive Teaching
,”
Prism
,
17
(
2
), p.
55
.
54.
Biggs
,
J.
,
1996
, “
Enhancing Teaching Through Constructive Alignment
,”
Higher Education
,
32
(
347
), pp.
347
364
. 10.1007/BF00138871
55.
Bateman
,
W. L.
,
1990
,
Open to Question. The Art of Teaching and Learning by Inquiry
,
Jossey-Bass Inc.
,
San Francisco, CA
.
56.
Lee
,
V. S.
,
2004
,
Teaching and Learning Through Inquiry: A Guidebook for Institutions and Instructors
,
Stylus Pub LLC
,
Sterling, VA
.
57.
Smith
,
D. A.
,
1996
, A Meta-Analysis of Student Outcomes Attributable to the Teaching of Science as Inquiry as Compared to Traditional Methodology, D.Ed., Temple University.
58.
Wilcox
,
J.
,
Kruse
,
J. W.
, and
Clough
,
M. P.
,
2015
, “
Teaching Science Through Inquiry
,”
Sci. Teach.
,
82
(
6
), pp.
62
68
.
59.
Shymansky
,
J. A.
,
Hedges
,
L. V.
, and
Woodworth
,
G.
,
1990
, “
A Reassessment of the Effects of Inquiry-Based Science Curricula of the 60’s on Student Performance
,”
J. Res. Sci. Teach.
,
27
(
2
), pp.
127
144
. 10.1002/tea.3660270205
60.
Barrows
,
H. S.
, and
Tamblyn
,
R. M.
,
1980
,
Problem-Based Learning: An Approach to Medical Education
,
Springer Publishing Company
,
New York
.
61.
Boud
,
D.
, and
Feletti
,
G.
,
2013
,
The Challenge of Problem-Based Learning
,
Routledge
,
London
.
62.
Norman
,
G. R.
, and
Schmidt
,
H. G.
,
1992
, “
The Psychological Basis of Problem-Based Learning: A Review of the Evidence
,”
Acad. Med.
,
67
(
9
),
557
565
. 10.1097/00001888-199209000-00002
63.
Dahlgren
,
M. A.
,
2003
, “
PBL Through the Looking-Glass: Comparing Applications in Computer Engineering, Psychology and Physiotherapy
,”
Int. J. Eng. Educ.
,
19
(
5
), pp.
672
681
.
64.
Duch
,
B. J.
,
Groh
,
S. E.
, and
Allen
,
D. E.
,
2001
,
The Power of Problem-Based Learning: A Practical “How to” for Teaching Undergraduate Courses in Any Discipline
,
Stylus Publishing, LLC
,
Sterling, VA
.
65.
Mills
,
J. E.
, and
Treagust
,
D. F.
, “
Engineering Education—Is Problem-Based or Project-Based Learning the Answer?
,”
Aus. J. Eng. Educ.
,
9
(
2
), p.
7062
.
66.
Heitmann
,
G.
,
1996
, “
Project-Oriented Study and Project-Organized Curricula: A Brief Review of Intentions and Solutions
,”
Eur. J. Eng. Educ.
,
21
(
2
), pp.
121
131
. 10.1080/03043799608923395
67.
Thomas
,
J. W.
,
2000
,
A Review of Research on Project-Based Learning
.
68.
Lundeberg
,
M. A.
,
Levin
,
B. B.
, and
Harrington
,
H. L.
,
1999
,
Who Learns What From Cases and How?: The Research Base for Teaching and Learning With Cases
,
Routledge
,
New Jersey
.
69.
Adam
,
M.
,
1992
,
The Responses of Eleventh Graders to Use of Case Method of Instruction in Social Studies
,
Simon Fraser University
,
Burnaby, British Columbia
.
70.
Novak
,
G. M.
,
Gavrini
,
A.
,
Christian
,
W.
, and
Patterson
,
E.
,
1999
,
Just-in-Time Teaching: Blending Active Learning With Web Technology
,
Prentice Hall
,
New Jersey
.
71.
Leonard
,
W. H.
,
1989
, “
An Experimental Test of an Extended Discretion Laboratory Approach for University General Biology
,”
J. Res. Sci. Teach.
,
26
(
1
), pp.
79
91
. 10.1002/tea.3660260108
72.
Singer
,
R. N.
, and
Pease
,
D.
,
1978
, “
Effect of Guided vs. Discovery Learning Strategies on Initial Motor Task Learning, Transfer, and Retention
,”
Res. Q.: American Alliance for Health, Physical Education and Recreation
,
49
(
2
), pp.
206
217
. 10.1080/10671315.1978.10615525
73.
Davison
,
Ryan C.
, and
National Academy of Engineering
,
2010
,
Engineering Curricula: Understanding the Design Space and Exploiting the Opportunities: Summary of a Workshop.
,
The National Academies Press
,
Washington, DC
. https://doi.org/10.17226/12824
74.
Hmelo-Silver
,
C. E.
,
2004
, “
Problem-Based Learning: What and How Do Students Learn?
,”
Educ. Psychol. Rev.
,
16
(
3
), pp.
235
266
. 10.1023/B:EDPR.0000034022.16470.f3
75.
Blumenfeld
,
P. C.
,
Soloway
,
E.
,
Marx
,
R. W.
,
Krajcik
,
J. S.
,
Guzdial
,
M.
, and
Palincsar
,
A.
,
1991
, “
Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning
,”
Educ. Psychol.
,
26
(
3–4
), pp.
369
398
. 10.1207/s15326985ep2603&4_8
76.
Wood
,
P. K.
,
1983
, “
Inquiring Systems and Problem Structure: Implications for Cognitive Development
,”
Hum. Dev.
,
26
(
5
), pp.
249
265
. 10.1159/000272887
77.
Sweller
,
J.
,
1988
, “
Cognitive Load During Problem Solving: Effects on Learning
,”
Cogn. Sci.: Multidiscip. J.
,
12
(
2
), pp.
257
285
. 10.1207/s15516709cog1202_4
78.
Jonassen
,
D. H.
,
1997
, “
Instructional Design Models for Well-Structured and Ill-Structured Problem-Solving Learning Outcomes
,”
Educ. Tech. Res. Dev.
,
45
(
1
), pp.
65
94
. 10.1007/BF02299613
79.
Voss
,
J. F.
,
1987
, “
Learning and Transfer in Subject-Matter Learning: A Problem Solving Model
,”
Int. J. Educ. Res.
,
11
(
6
), pp.
607
622
. 10.1016/0883-0355(87)90005-X
80.
Delisle
,
R.
,
1997
,
How to Use Problem-Based Learning in the Classroom
,
Ascd
,
Alexandria, VA
.
81.
Duch
,
B. J.
,
2001
, “Writing Problems for Deeper Understanding,”
The Power of Problem-based Learning
,
B. J.
Duch
,
S. E.
Groh
,
D. E.
Allen
, eds.,
Stylus Publishing
,
Sterling, VA
.
82.
Joyce
,
C. K.
,
2009
,
The Blank Page: Effects of Constraint on Creativity
,
University of California
,
Berkley
.
83.
Stokes
,
P. D.
,
2008
, “
Creativity From Constraints. What Can We Learn From Motherwell? From Mondrian? From Klee?
,”
J. Creat. Behav.
,
42
(
4
), pp.
223
236
. 10.1002/j.2162-6057.2008.tb01297.x
84.
Stokes
,
P. D.
, and
Fisher
,
D.
,
2005
, “
Selection, Constraints, and Creativity Case Studies: Max Beckmann and Philip Guston
,”
Creat. Res. J.
,
17
(
2–3
), pp.
283
291
. 10.1207/s15326934crj1702&3_13
85.
Ward
,
T. B.
,
Patterson
,
M. J.
, and
Sifonis
,
C. M.
,
2004
, “
The Role of Specificity and Abstraction in Creative Idea Generation
,”
Creat. Res. J.
,
16
(
1
), pp.
1
9
. 10.1207/s15326934crj1601_1
86.
Ward
,
T. B.
,
1994
, “
Structured Imagination: The Role of Category Structure in Exemplar Generation
,”
Cogn.. Psychol.
,
27
(
1
), pp.
1
40
. 10.1006/cogp.1994.1010
87.
Jansson
,
D. G.
, and
Smith
,
S. M.
,
1991
, “
Design Fixation
,”
Des. Stud.
,
12
(
1
), pp.
3
11
. 10.1016/0142-694X(91)90003-F
88.
Crilly
,
N.
,
2015
, “
Fixation and Creativity in Concept Development: The Attitudes and Practices of Expert Designers
,”
Des. Stud.
,
38
, pp.
54
91
. 10.1016/j.destud.2015.01.002
89.
Williams
,
C. B.
, and
Seepersad
,
C. C.
,
2012
, “
Design for Additive Manufacturing Curriculum: A Problem-and Project-Based Approach
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8, 2011
, pp.
81
92
.
90.
Williams
,
C. B.
,
Sturm
,
L.
, and
Wicks
,
A.
,
2015
, “
Advancing Student Learning of Design for Additive Manufacturing Principles Through an Extracurricular Vehicle Design Competition
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, pp.
1
8
.
91.
Diegel
,
O.
,
Nordin
,
A.
, and
Motte
,
D.
,
2019
, “Teaching Design for Additive Manufacturing Through Problem-Based Learning,”
Additive Manufacturing – Developments in Training and Education
,
E.
Pei
,
M.
Monzón
, and
A.
Bernard
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
139
149
.
92.
Richter
,
T.
,
Schumacher
,
F.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2018
, “
Exploitation of Potentials of Additive Manufacturing in Ideation Workshops
,”
The Fifth International Conference on Design Creativity (ICDC2018)
,
Bath, UK
,
Jan. 31–Feb. 2
, pp.
1
8
.
93.
Meisel
,
N. A.
, and
Williams
,
C. B.
,
2015
, “
Design and Assessment of a 3D Printing Vending Machine
,”
Rapid Prototyp. J.
,
21
(
5
), pp.
471
481
. 10.1108/RPJ-07-2014-0081
94.
Submitting Your 3D Print | Maker Commons
.” https:/makercommons.psu.edu/2016/08/24/printing-guidelines-and-best-practices/. Accessed Feb 12, 2018.
95.
Forest
,
C. R.
,
Moore
,
R. A.
,
Jariwala
,
A. S.
,
Fasse
,
B. B.
,
Linsey
,
J.
,
Newstetter
,
W.
,
Ngo
,
P.
, and
Quintero
,
C.
,
2014
, “
The Invention Studio: A University Maker Space and Culture
,”
Adv. Eng. Educ.
,
4
(
2
), pp.
1
32
.
96.
Sinha
,
S.
,
Rieger
,
K.
,
Knochel
,
A. D.
, and
Meisel
,
N. A.
,
2017
, “
Design and Preliminary Evaluation of a Deployable Mobile Makerspace for Informal Additive Manufacturing Education
,” pp.
2801
2815
.
97.
“3D Printing Services | Case School of Engineering.” http://engineering.case.edu/sears-thinkbox/use/3d-printing-services. Accessed Jan. 28, 2019.
98.
“3D Printing Service—MIT Project Manus.” https://project-manus.mit.edu/3d-printing-service. Accessed Jan. 28, 2019.
99.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chavla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
).
100.
Bloesch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), pp.
1
40
.
101.
Sheng
,
I. L. S.
, and
Kok-Soo
,
T.
,
2010
, “
Eco-Efficient Product Design Using Theory of Inventive Problem Solving (TRIZ) Principles
,”
Am. J. Appl. Sci.
,
7
(
6
), pp.
852
858
. 10.3844/ajassp.2010.852.858
102.
Gross
,
J.
,
Park
,
K.
, and
Kremer
,
G. E. O.
,
2018
, “
Design for Additive Manufacturing Inspired by TRIZ
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City
,
Aug. 26–29
, pp.
1
10
.
103.
“Design Thinking—Made By Design Lab.” http://sites.psu.edu/madebydesign/design-thinking/. Accessed Apr. 24, 2019.
104.
Amabile
,
T. M.
,
1996
,
Creativity in Context: Update to the Social Psychology of Creativity
,
Westview Press
.
105.
Sinha
,
S.
,
Chen
,
H.-E.
,
Meisel
,
N. A.
, and
Miller
,
S. R.
,
2017
, “
Does Designing for Additive Manufacturing Help us be More Creative? An Exploration in Engineering Design Education
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
12
.
106.
Goldschmidt
,
G.
, and
Rodgers
,
P. A.
,
2013
, “
The Design Thinking Approaches of Three Different Groups of Designers Based on Self-Reports
,”
Des. Stud.
,
34
(
4
), pp.
454
471
. 10.1016/j.destud.2013.01.004
107.
Bandura
,
A.
,
1977
, “
Self-Efficacy: Toward a Unifying Theory of Behavioral Change
,”
Psychol. Rev.
,
84
(
2
), pp.
191
215
.
108.
Carberry
,
A. R.
,
Lee
,
H.-S.
, and
Ohland
,
M. W.
,
2010
, “
Measuring Engineering Design Self-Efficacy
,”
J. Eng. Educ.
,
99
(
1
), pp.
71
79
. 10.1002/j.2168-9830.2010.tb01043.x
109.
Quade
,
A.
,
2003
, “
Development and Validation of a Computer Science Self-Efficacy Scale for CS0 Courses and the Group Analysis of CS0 Student Self-Efficacy
,”
Proceedings ITCC 2003, International Conference on Information Technology: Computers and Communications
,
Las Vegas, NV
,
Apr. 28–30
, pp.
60
64
.
110.
Compeau
,
D. R.
, and
Higgins
,
C. A.
,
2016
, “
Computer Self-Efficacy: Development of a Measure and Initial Test
,”
MIS Quarterly
,
19
(
2
), pp.
189
211
. DOI: 10.2307/249688
111.
Lee
,
C.
,
1982
, “
Self-Efficacy as a Predictor of Performance in Competitive Gymnastics
,”
J. Sport Psychol.
,
4
(
4
), pp.
405
409
. 10.1123/jsp.4.4.405
112.
Barling
,
J.
, and
Abel
,
M.
,
1983
, “
Self-Efficacy Beliefs and Tennis Performance
,”
Cogn. Ther. Res.
,
7
(
3
), pp.
265
272
. 10.1007/BF01205140
113.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City
,
Aug. 26–29
, pp.
1
14
.
114.
Cronbach
,
L. J.
,
1951
, “
Coefficient Alpha and the Internal Structure of Tests
,”
Psychometrika
,
16
(
3
), pp.
297
334
. 10.1007/BF02310555
115.
Hennessey
,
B. A.
,
1994
, “
The Consensual Assessment Technique: An Examination of the Relationship Between Ratings of Product and Process Creativity
,”
Creat. Res. J.
,
7
(
2
), pp.
193
208
. 10.1080/10400419409534524
116.
Baer
,
J.
, and
McKool
,
S. S.
,
2009
,
Handbook of Research on Assessment Technologies, Methods, and Applications in Higher Education
,
Information Science Publishing
,
Hershey
, pp.
65
77
.
117.
Kaufman
,
J. C.
, and
Baer
,
J.
,
2012
, “
Beyond New and Appropriate: Who Decides What is Creative?
,”
Creat. Res. J.
,
24
(
1
), pp.
83
91
. 10.1080/10400419.2012.649237
118.
Kaufman
,
J. C.
,
Baer
,
J.
,
Cropley
,
D. H.
,
Reiter-Palmon
,
R.
, and
Sinnett
,
S.
,
2013
, “
Furious Activity vs. Understanding: How Much Expertise is Needed to Evaluate Creative Work?
,”
Psychol. Aesthet. Creat. Arts
,
7
(
4
), pp.
332
340
. 10.1037/a0034809
119.
Shrout
,
P. E.
, and
Fleiss
,
J. L.
,
1979
, “
Intraclass Correlations: Uses in Assessing Rater Reliability
,”
Psychol. Bull.
,
86
(
2
), pp.
420
428
. 10.1037/0033-2909.86.2.420
120.
Besemer
,
S. P.
,
1998
, “
Creative Product Analysis Matrix: Testing the Model Structure and a Comparison Among Products—Three Novel Chairs
,”
Creat. Res. J.
,
11
(
4
), pp.
333
346
. 10.1207/s15326934crj1104_7
121.
Besemer
,
S. P.
, and
O’Quin
,
K.
,
1999
, “
Confirming the Three-Factor Creative Product Analysis Matrix Model in an American Sample
,”
Creat. Res. J.
,
12
(
4
), pp.
329
337
. 10.1207/s15326934crj1204_6
122.
Shapiro
,
A. S. S.
, and
Wilk
,
M. B.
,
1965
, “
An Analysis of Variance Test for Normality (Complete Samples)
,”
Biometrika
,
52
(
3
), pp.
591
611
. 10.1093/biomet/52.3-4.591
123.
Bandura
,
A.
, and
Schunk
,
D. H.
,
1981
, “
Cultivating Competence, Self-Efficacy, and Intrinsic Interest Through Proximal Self-Motivation
,”
J. Pers. Soc. Psychol.
,
41
(
3
), pp.
586
598
. 10.1037/0022-3514.41.3.586
124.
Onarheim
,
B.
,
2012
, “
Creativity From Constraints in Engineering Design: Lessons Learned at Coloplast
,”
J. Eng. Des.
,
23
(
4
), pp.
323
336
. 10.1080/09544828.2011.631904
125.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2019
, “
Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and Its Outcomes
,”
ASME J. Mech. Des.
doi:10.1115/1.4044324
126.
Jamieson
,
S.
,
2004
, “
Likert Scales: How to (Ab)Use Them
,”
Med. Educ.
,
38
(
12
), pp.
1217
1218
. 10.1111/j.1365-2929.2004.02012.x
127.
Prabhu
,
R.
,
Simpson
,
T. W.
,
Miller
,
S. R.
, and
Meisel
,
N. A.
,
2019
, “
But Will It Print? Assessing Student Use of Design for Additive Manufacturing and Exploring Its Effect on Design Performance and Manufacturability
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, pp.
1
14
.
128.
Barclift
,
M.
,
Simpson
,
T. W.
,
Nusiner
,
M. A.
, and
Miller
,
S.
,
2017
, “
An Investigation Into the Driving Factors of Creativity in Design for Additive Manufacturing
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
14
.
129.
Boud
,
D.
, and
Falchikov
,
N.
,
1989
, “
Quantitative Studies of Student Self-Assessment in Higher Education: A Critical Analysis of Findings
,”
Higher Educ.
,
18
(
5
), pp.
529
549
. 10.1007/BF00138746
You do not currently have access to this content.