Abstract

Product performance varies with respect to time and space in many engineering applications. This paper discusses how to measure and evaluate the robustness of a product or component when its quality characteristics (QCs) are functions of random variables, random fields, temporal variables, and spatial variables. At first, the existing time-dependent robustness metric is extended to the present time- and space-dependent problem. The robustness metric is derived using the extreme value of the quality characteristics with respect to temporal and spatial variables for the nominal-the-better type quality characteristics. Then, a metamodel-based numerical procedure is developed to evaluate the new robustness metric. The procedure employs a Gaussian Process regression method to estimate the expected quality loss that involves the extreme quality characteristics. The expected quality loss is obtained directly during the regression model building process. Four examples are used to demonstrate the robustness analysis method. The proposed method can be used for robustness analysis during robust design optimization (RDO) under time- and space-dependent uncertainty.

References

1.
Taguchi
,
G.
,
1993
,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME Press
,
New York
.
2.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
Prentice Hall PTR
,
Englewood Cliffs, NJ
.
3.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
. 10.1115/1.1290247
4.
Huang
,
B.
, and
Du
,
X.
,
2007
, “
Analytical Robustness Assessment for Robust Design
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
123
137
. 10.1007/s00158-006-0068-0
5.
Mulvey
,
J. M.
,
Vanderbei
,
R. J.
, and
Zenios
,
S. A.
,
1995
, “
Robust Optimization of Large-Scale Systems
,”
Oper. Res.
,
43
(
2
), pp.
264
281
. 10.1287/opre.43.2.264
6.
Goh
,
J.
, and
Sim
,
M.
,
2010
, “
Distributionally Robust Optimization and its Tractable Approximations
,”
Oper. Res.
,
58
(
4-part-1
), pp.
902
917
. 10.1287/opre.1090.0795
7.
Fabozzi
,
F. J.
,
Huang
,
D.
, and
Zhou
,
G.
,
2010
, “
Robust Portfolios: Contributions From Operations Research and Finance
,”
Ann. Oper. Res.
,
176
(
1
), pp.
191
220
. 10.1007/s10479-009-0515-6
8.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
,
2002
, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
,
40
(
2
), pp.
301
309
. 10.2514/2.1646
9.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
,
1997
, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
,
14
(
1
), pp.
1
23
. 10.1007/BF01197554
10.
Doltsinis
,
I.
, and
Kang
,
Z.
,
2004
, “
Robust Design of Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
23–26
), pp.
2221
2237
. 10.1016/j.cma.2003.12.055
11.
Lagaros
,
N. D.
,
Plevris
,
V.
, and
Papadrakakis
,
M.
,
2007
, “
Reliability Based Robust Design Optimization of Steel Structures
,”
Int. J. Simul. Multidiscip. Des. Optim.
,
1
(
1
), pp.
19
29
. 10.1051/ijsmdo:2007003
12.
Cheng
,
J.
,
Liu
,
Z.
,
Wu
,
Z.
,
Li
,
X.
, and
Tan
,
J.
,
2015
, “
Robust Optimization of Structural Dynamic Characteristics Based on Adaptive Kriging Model and CNSGA
,”
Struct. Multidiscip. Optim.
,
51
(
2
), pp.
423
437
. 10.1007/s00158-014-1140-9
13.
Roy
,
B. K.
, and
Chakraborty
,
S.
,
2015
, “
Robust Optimum Design of Base Isolation System in Seismic Vibration Control of Structures Under Random System Parameters
,”
Struct. Saf.
,
55
, pp.
49
59
. 10.1016/j.strusafe.2015.02.005
14.
Fang
,
J.
,
Gao
,
Y.
,
Sun
,
G.
, and
Li
,
Q.
,
2013
, “
Multiobjective Reliability-Based Optimization for Design of a Vehicle Door
,”
Finite Elements Anal. Des.
,
67
, pp.
13
21
. 10.1016/j.finel.2012.11.007
15.
Hwang
,
K.
,
Lee
,
K.
, and
Park
,
G.
,
2001
, “
Robust Optimization of an Automobile Rearview Mirror for Vibration Reduction
,”
Struct. Multidiscip. Optim.
,
21
(
4
), pp.
300
308
. 10.1007/s001580100107
16.
Sun
,
G.
,
Li
,
G.
,
Zhou
,
S.
,
Li
,
H.
,
Hou
,
S.
, and
Li
,
Q.
,
2011
, “
Crashworthiness Design of Vehicle by Using Multiobjective Robust Optimization
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
99
110
. 10.1007/s00158-010-0601-z
17.
Lee
,
T. H.
, and
Jung
,
J.
,
2006
, “
Metamodel-Based Shape Optimization of Connecting rod Considering Fatigue Life
,”
Key Eng. Mater.
,
306–308
, pp.
211
216
. 10.4028/www.scientific.net/KEM.306-308.211
18.
Li
,
F.
,
Meng
,
G.
,
Sha
,
L.
, and
Zhou
,
L.
,
2011
, “
Robust Optimization Design for Fatigue Life
,”
Finite Elements Anal. Des.
,
47
(
10
), pp.
1186
1190
. 10.1016/j.finel.2011.05.009
19.
Carpinelli
,
G.
,
Caramia
,
P.
, and
Varilone
,
P.
,
2015
, “
Multi-Linear Monte Carlo Simulation Method for Probabilistic Load Flow of Distribution Systems With Wind and Photovoltaic Generation Systems
,”
Renew. Energy
,
76
, pp.
283
295
. 10.1016/j.renene.2014.11.028
20.
Li
,
F.
,
Luo
,
Z.
,
Sun
,
G.
, and
Zhang
,
N.
,
2013
, “
An Uncertain Multidisciplinary Design Optimization Method Using Interval Convex Models
,”
Eng. Optim.
,
45
(
6
), pp.
697
718
. 10.1080/0305215X.2012.690871
21.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
,
2008
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
117
130
. 10.1007/s00158-007-0121-7
22.
Kim
,
N.-K.
,
Kim
,
D.-H.
,
Kim
,
D.-W.
,
Kim
,
H.-G.
,
Lowther
,
D. A.
, and
Sykulski
,
J. K.
,
2010
, “
Robust Optimization Utilizing the Second-Order Design Sensitivity Information
,”
IEEE Trans. Magn.
,
46
(
8
), pp.
3117
3120
. 10.1109/TMAG.2010.2043719
23.
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2013
, “
Third-Order Sensitivity Analysis for Robust Aerodynamic Design Using Continuous Adjoint
,”
Int. J. Numer. Methods Fluids
,
71
(
5
), pp.
652
670
. 10.1002/fld.3677
24.
Li
,
M.
,
Hamel
,
J.
, and
Azarm
,
S.
,
2010
, “
Optimal Uncertainty Reduction for Multi-Disciplinary Multi-Output Systems Using Sensitivity Analysis
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), p.
77
. 10.1007/s00158-009-0372-6
25.
Siddiqui
,
S.
,
Azarm
,
S.
, and
Gabriel
,
S.
,
2011
, “
A Modified Benders Decomposition Method for Efficient Robust Optimization Under Interval Uncertainty
,”
Struct. Multidiscip. Optim.
,
44
(
2
), pp.
259
275
. 10.1007/s00158-011-0631-1
26.
Siddiqui
,
S.
,
Gabriel
,
S. A.
, and
Azarm
,
S.
,
2015
, “
Solving Mixed-Integer Robust Optimization Problems With Interval Uncertainty Using Benders Decomposition
,”
J. Oper. Res. Soc.
,
66
(
4
), pp.
664
673
. 10.1057/jors.2014.41
27.
Chatterjee
,
T.
,
Chowdhury
,
R.
, and
Ramu
,
P.
,
2019
, “
Decoupling Uncertainty Quantification From Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
59
(
6
), pp.
1969
1990
. 10.1007/s00158-018-2167-0
28.
Chatterjee
,
T.
,
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2019
, “
A Critical Review of Surrogate Assisted Robust Design Optimization
,”
Arch. Comput. Methods Eng.
,
26
(
1
), pp.
245
274
. 10.1007/s11831-017-9240-5
29.
Steuben
,
J.
, and
Turner
,
C. J.
, “
Robust Optimization Exploration Using NURBs-Based Metamodeling Techniques
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers Digital Collection
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
239
250
.
30.
Steuben
,
J. C.
, and
Turner
,
C.
,
2012
, “
Robust Optimization of Mixed-Integer Problems Using NURBs-Based Metamodels
,”
J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041010
. 10.1115/1.4007988
31.
Steuben
,
J. C.
,
Turner
,
C. J.
, and
Crawford
,
R. H.
,
2013
, “
Robust Engineering Design Optimization With Non-Uniform Rational B-Splines-Based Metamodels
,”
Eng. Optim.
,
45
(
7
), pp.
767
786
. 10.1080/0305215X.2012.709509
32.
Zhou
,
H.
,
Zhou
,
Q.
,
Liu
,
C.
, and
Zhou
,
T.
,
2018
, “
A Kriging Metamodel-Assisted Robust Optimization Method Based on a Reverse Model
,”
Eng. Optim.
,
50
(
2
), pp.
253
272
. 10.1080/0305215X.2017.1307355
33.
Du
,
X.
,
2012
, “
Toward Time-Dependent Robustness Metrics
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011004
. 10.1115/1.4005445
34.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
. 10.1115/1.1759358
35.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
, and
Budhiraja
,
A. S.
,
2000
, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
3
), pp.
190
213
. 10.1007/s001580050148
36.
Tsui
,
K.-L.
,
1999
, “
Modeling and Analysis of Dynamic Robust Design Experiments
,”
IIE Trans.
,
31
(
12
), pp.
1113
1122
. 10.1080/07408179908969912
37.
Wu
,
F.-C.
,
2009
, “
Robust Design of Nonlinear Multiple Dynamic Quality Characteristics
,”
Comput. Ind. Eng.
,
56
(
4
), pp.
1328
1332
. 10.1016/j.cie.2008.08.001
38.
Goethals
,
P. L.
, and
Cho
,
B. R.
,
2011
, “
The Development of a Robust Design Methodology for Time-Oriented Dynamic Quality Characteristics With a Target Profile
,”
Qual. Reliab. Eng. Int.
,
27
(
4
), pp.
403
414
. 10.1002/qre.1122
39.
Wei
,
X.
, and
Du
,
X.
,
2019
, “
Uncertainty Analysis for Time-and Space-Dependent Responses With Random Variables
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021402
. 10.1115/1.4041429
40.
Törn
,
A.
, and
Žilinskas
,
A.
,
1989
,
Global Optimization
,
Springer
,
New York
.
41.
Strongin
,
R. G.
, and
Sergeyev
,
Y. D.
,
1992
, “
Global Multidimensional Optimization on Parallel Computer
,”
Parallel Comput.
,
18
(
11
), pp.
1259
1273
. 10.1016/0167-8191(92)90069-J
42.
Strongin
,
R. G.
, and
Sergeyev
,
Y. D.
,
2013
,
Global Optimization With Non-Convex Constraints: Sequential and Parallel Algorithms
,
Springer Science & Business Media
,
New York
.
43.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
,
2002
, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optim.
,
34
(
3
), pp.
263
278
. 10.1080/03052150211751
44.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
45.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
DACE: A Matlab Kriging Toolbox
,
Citeseer
.
46.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis with Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
. 10.1115/1.4034219
47.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
. 10.1115/1.4033428
48.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
,
Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report
,
Department of Civil and Environmental Engineering, University of California
,
Berkeley, CA
.
49.
Gabrel
,
V.
,
Murat
,
C.
, and
Thiele
,
A.
,
2014
, “
Recent Advances in Robust Optimization: An Overview
,”
Eur. J. Oper. Res.
,
235
(
3
), pp.
471
483
. 10.1016/j.ejor.2013.09.036
50.
Bovier
,
A.
,
2005
,
Extreme Values of Random Processes
,
Lecture Notes Technische Universität Berlin
,
Bonn
.
51.
Kotz
,
S.
, and
Nadarajah
,
S.
,
2000
,
Extreme Value Distributions: Theory and Applications
,
World Scientific
,
London
.
52.
Mooney
,
C. Z.
,
1997
,
Monte Carlo Simulation
,
Sage Publications
,
Thousand Oaks, CA
.
53.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Nithiarasu
,
P.
, and
Zhu
,
J.
,
1977
,
The Finite Element Method
,
McGraw-Hill
,
London
.
54.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
. 10.1115/1.4029520
55.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
. 10.1023/A:1008306431147
56.
Chen
,
W.
,
Tsui
,
K.-L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1995
, “
Integration of the Response Surface Methodology With the Compromise Decision Support Problem in Developing a General Robust Design Procedure
,”
ASME Design Engineering Technical Conference
,
Boston, MA
,
Sept. 17–21
, pp.
485
492
.
57.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, p.
1939
.
58.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
You do not currently have access to this content.