Abstract

As computer aided design (CAD) tools become more sophisticated, engineers are able to more easily create complex part geometries with minimal mass given strength and stiffness requirements. However, these complex part geometries can be difficult to subtractively manufacture, which consequently increases manufacturing cost and production time. This paper presents a method for use during the embodiment design process to automatically evaluate a given part’s machinability and to provide visual geometric additions that decrease manufacturing cost while maintaining the part’s strength and stiffness requirements. Dividing a single part into multiple subparts—joined together after being machined—offers additional possibilities for cost reduction and machinability improvements by utilizing smaller stock material that requires fewer machining operations. Evaluating and culling candidates based on two objectives (added volume and cost) provide the design engineer with a set of Pareto-optimal solutions that show where material can be added to reduce manufacturing costs. These methods’ capability and utility are demonstrated through analyses of five example parts.

References

1.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C. C. L.
,
Cheng
,
L.
,
Liang
,
X.
, and
To
,
A. C.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2457
2483
. 10.1007/s00158-018-1994-3
2.
Hoefer
,
M.
,
Chen
,
N.
, and
Frank
,
M.
,
2017
, “
Automated Manufacturability Analysis for Conceptual Design in New Product Development
,”
K.
Coerich
,
E.
Cudney
, and
H.
Nembhard
, eds.,
2017 Industrial and Systems Engineering Research Conference
,
Pittsburgh, PA
,
May 20–23
.
3.
Kim
,
W.
, and
Simpson
,
T. W.
,
2013
, “Toward Automated Design for Manufacturing Feedback,”
Advances in Production Management Systems. Sustainable Production and Service Supply Chains
,
V.
Prabhu
,
M.
Taisch
, and
D.
Kiritsis
, eds.,
Springer
,
Berlin
, pp.
40
47
.
4.
Jang
,
D.
,
Kim
,
K.
, and
Jung
,
J.
,
2000
, “
Voxel-Based Virtual Multi-Axis Machining
,”
Int. J. Adv. Manuf. Technol.
,
16
(
10
), pp.
709
713
. 10.1007/s001700070022
5.
Frank
,
M. C.
,
Wysk
,
R. A.
, and
Joshi
,
S. B.
,
2006
, “
Determining Setup Orientations From the Visibility of Slice Geometry for Rapid Computer Numerically Controlled Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
228
238
. 10.1115/1.2039100
6.
Li
,
Y.
, and
Frank
,
M. C.
,
2006
, “
Machinability Analysis for 3-Axis Flat End Milling
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
454
464
. 10.1115/1.2137748
7.
Lee
,
R. S.
,
Lin
,
Y. H.
,
Tseng
,
M. Y.
, and
Wu
,
W. S.
,
2010
, “
Evaluation of Workpiece Orientation and Configuration of Multi-Axis Machine Tool Using Visibility Cone Analysis
,”
Int. J. Comput. Integr. Manuf.
,
23
(
7
), pp.
630
639
. 10.1080/09511921003700861
8.
Samarghandy
,
H.
, and
Li
,
Y.
,
2013
, “
Detecting Re-Design Area for Increasing Manufacturability of Drilling and Three-Axis Pocketing Operations
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
337
349
. 10.1007/s00170-013-5023-9
9.
Chu
,
C.-C. P.
, and
Gadh
,
R.
,
1996
, “
Feature-Based Approach for Set-Up Minimization of Process Design From Product Design
,”
Comput. Aided Des.
,
28
(
5
), pp.
321
332
. 10.1016/0010-4485(95)00052-6
10.
Ong
,
S. K.
, and
Chew
,
L.
,
2000
, “
Evaluating the Manufacturability of Machined Parts and Their Setup Plans
,”
Int. J. Prod. Res.
,
38
(
11
), pp.
2397
2415
. 10.1080/00207540050031832
11.
Fu
,
W.
,
Eftekharian
,
A. A.
,
Radhakrishnan
,
P.
,
Campbell
,
M. I.
, and
Fritz
,
C.
,
2012
, “
A Graph Grammar Based Approach to Automated Manufacturing Planning
,”
38th Design Automation Conference
,
Chicago, IL
,
Aug. 12–15
,
ASME
, p.
77
.
12.
Nelaturi
,
S.
,
Burton
,
G.
,
Fritz
,
C.
, and
Kurtoglu
,
T.
,
2015
, “
Automatic Spatial Planning for Machining Operations
,”
IEEE International Conference on Automation Science and Engineering
,
Gothenberg, Sweden
,
Aug. 24–28
.
13.
Nelaturi
,
S.
,
Rangarajan
,
A.
,
Fritz
,
C.
, and
Kurtoglu
,
T.
,
2014
, “
Automated Fixture Configuration for Rapid Manufacturing Planning
,”
Comput. Aided Des.
,
46
(
1
), pp.
160
169
. 10.1016/j.cad.2013.08.028
14.
Behandish
,
M.
,
Nelaturi
,
S.
, and
Allard
,
M.
,
2018
, “Automated Process Planning for Turning: A Feature-Free Approach,”
Advances in Manufacturing Technology XXXII
,
P.
Thorvald
and
K.
Case
, eds.,
IOS Press
,
Skövde
, pp.
45
50
.
15.
Chan
,
R.
,
Haapala
,
K. R.
, and
Campbell
,
M. I.
,
2018
, “
Assessing Component Machinability Using Voxelized Solid Models
,”
23rd Design for Manufacturing and the Life Cycle Conference
,
Quebec City
,
Aug. 26–29
, p.
V004T05A005
.
16.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2015
, “
A Pareto-Optimal Approach to Multimaterial Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101701
. 10.1115/1.4031088
17.
Corbett
,
J.
, and
Crookall
,
J.
,
1986
, “
Design for Economic Manufacture
,”
CIRP Ann.
,
35
(
1
), pp.
93
97
. 10.1016/S0007-8506(07)61846-0
18.
Boothroyd
,
G.
, and
Radovanovic
,
P.
,
1989
, “
Estimating the Cost of Machined Components During the Conceptual Design of a Product
,”
CIRP Ann.
,
38
(
1
), pp.
157
160
. 10.1016/S0007-8506(07)62674-2
19.
Geiger
,
T. S.
, and
Dilts
,
D. M.
,
1996
, “
Automated Design-to-Cost: Integrating Costing Into the Design Decision
,”
Comput. Aided Des.
,
28
(
6–7
), pp.
423
438
. 10.1016/0010-4485(94)00030-1
20.
Jung
,
J.-Y.
,
2002
, “
Manufacturing Cost Estimation for Machined Parts Based on Manufacturing Features
,”
J. Intell. Manuf.
,
13
(
4
), pp.
227
238
. 10.1023/A:1016092808320
21.
Das
,
S.
, and
Kanchanapiboon
,
A.
,
2011
, “
A Multi-Criteria Model for Evaluating Design for Manufacturability
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1197
1217
. 10.1080/00207540903505267
22.
apriori Software
,
2012
, “
Improving the Quality of Product Cost
,” Tech. Rep.,
March
, apriori Software.
23.
apriori Software
,
2013
, “
What Will My Design Cost to Produce?
” Tech. Rep., apriori Software.
24.
Massoni
,
B. R.
, and
Campbell
,
M. I.
,
2017
, “
A Decomposition Method for Efficient Manufacturing of Complex Parts
,”
Comput. Aided Des. Appl.
,
14
(
6
), pp.
705
719
. 10.1080/16864360.2017.1287673
25.
Massoni
,
B.
, and
Campbell
,
M. I.
,
2017
, “
Optimizing Cutting Planes for Advanced Joining and Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031001
. 10.1115/1.4038509
26.
Campbell
,
M. I.
, “
TVGL: Tessellation and Voxelization Geometry Library
,” online open-source software github.com/DesignEngrLab/TVGL
27.
Chan
,
C.
, and
Tan
,
S.
,
2001
, “
Determination of the Minimum Bounding Box of an Arbitrary Solid: An Iterative Approach
,”
Comput. Struct.
,
79
(
15
), pp.
1433
1449
. 10.1016/S0045-7949(01)00046-3
28.
Rafibakhsh
,
N.
, and
Campbell
,
M.
,
2018
, “
Hierarchical Fuzzy Primitive Surface Classification From Tessellated Solids for Defining Part-to-Part Removal Directions
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011006
. 10.1115/1.4038144
29.
Lawler
,
E. L.
, and
Wood
,
D. E.
,
1966
, “
Branch-and-Bound Methods: A Survey
,”
Oper. Res.
,
14
(
4
), pp.
699
719
. 10.1287/opre.14.4.699
You do not currently have access to this content.