Abstract

While integrated physical and control system co-design has been demonstrated successfully on several engineering system design applications, it has been primarily applied in a deterministic manner without considering uncertainties. An opportunity exists to study non-deterministic co-design strategies, taking into account various uncertainties in an integrated co-design framework. Reliability-based design optimization (RBDO) is one such method that can be used to ensure an optimized system design being obtained that satisfies all reliability constraints considering particular system uncertainties. While significant advancements have been made in co-design and RBDO separately, little is known about methods where reliability-based dynamic system design and control design optimization are considered jointly. In this article, a comparative study of the formulations and algorithms for reliability-based co-design is conducted, where the co-design problem is integrated with the RBDO framework to yield solutions consisting of an optimal system design and the corresponding control trajectory that satisfy all reliability constraints in the presence of parameter uncertainties. The presented study aims to lay the groundwork for the reliability-based co-design problem by providing a comparison of potential design formulations and problem–solving strategies. Specific problem formulations and probability analysis algorithms are compared using two numerical examples. In addition, the practical efficacy of the reliability-based co-design methodology is demonstrated via a horizontal-axis wind turbine structure and control design problem.

References

1.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
. 10.2514/1.J052182
2.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
Arlington, VA
,
June 25–27
, Vol.
3
, pp.
1864
1869
.
3.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization Wth Application to Combined Passive/Active Automotive Suspensions
,”
Proceedings of the 2003 American Control Conference
,
Denver, CO
,
June 4–6
,
IEEE
, pp.
3375
3380
.
4.
Yan
,
H.-S.
, and
Yan
,
G.-J.
,
2009
, “
Integrated Control and Mechanism Design for the Variable Input-Speed Servo Four-Bar Linkages
,”
Mechatronics
,
19
(
2
), pp.
274
285
. 10.1016/j.mechatronics.2008.07.008
5.
Allison
,
J. T.
,
2013
, “
Plant-Limited Co-Design of An Energy-Efficient Counterbalanced Robotic Manipulator
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101003
. 10.1115/1.4024978
6.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of An Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
. 10.1115/1.4027335
7.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscipl. Optim.
,
53
(
1
), pp.
15
27
. 10.1007/s00158-015-1308-y
8.
Tu
,
J.
,
Choi
,
K.
, and
Park
,
Y.
,
1999
, “
A New Study on Reliability- Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
. 10.1115/1.2829499
9.
Youn
,
B.
,
Choi
,
K.
, and
Park
,
Y.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
. 10.1115/1.1561042
10.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
. 10.2514/1.6648
11.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
,
2005
, “
First-order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
851
857
. 10.1115/1.1899691
12.
Noh
,
Y.
,
Choi
,
K.
, and
Du
,
L.
,
2009
, “
Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula
,”
Struct. Multidiscipl. Optim.
,
38
(
1
), pp.
1
16
. 10.1007/s00158-008-0277-9
13.
Liang
,
J.
,
Mourelatos
,
Z.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
. 10.1115/1.2779884
14.
Nguyen
,
T.
,
Song
,
J.
, and
Paulino
,
G.
,
2010
, “
Single-Loop System Reliability-Based Design Optimization Using Matrix-Based System Reliability Method: Theory and Applications
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011005
. 10.1115/1.4000483
15.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
16.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p.
V02AT03A002
.
17.
Park
,
H.-U.
,
Lee
,
J.-W.
,
Chung
,
J.
, and
Behdinan
,
K.
,
2015
, “
Uncertainty-Based MDO for Aircraft Conceptual Design
,”
Aircraft Eng. Aerosp. Technol.
,
87
(
4
), pp.
345
356
. 10.1108/AEAT-07-2013-0128
18.
Liberzon
,
D.
,
2011
,
Calculus of Variations and Optimal Control Theory: A Concise Introduction
,
Princeton University Press
,
Princeton, NJ
.
19.
Deshmukh
,
A. P.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2015
, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in Co-Design: A Framework for Complete Optimal Plant and Control Architecture Design
,”
2015 American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
, pp.
4916
4922
.
20.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
21.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
. 10.1115/1.4040705
22.
Pontryagin
,
L. S.
,
1962
,
The Mathematical Theory of Optimal Processes
,
Interscience
,
New York
.
23.
Herber
,
D. R.
,
2017
, “
Advances in Combined Architecture, Plant, and Control Design
”. Ph.D. dissertation,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
24.
Herber
,
D.
,
Lee
,
Y.
, and
Allison
,
J.
,
n. d.
, DT QP Project, https://github.com/danielrherber/dt-qp-project
25.
Rahman
,
S.
,
2009
, “
Stochastic Sensitivity Analysis by Dimensional Decomposition and Score Functions
,”
Probabilistic Eng. Mech.
,
24
(
3
), pp.
278
287
. 10.1016/j.probengmech.2008.07.004
26.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
,
Engineering Design Under Uncertainty and Health Prognostics
,
Springer
,
Cham
, pp.
190
194
.
27.
Wu
,
Y.
,
Millwater
,
H.
, and
Cruse
,
T.
,
1990
, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
,
28
(
9
), pp.
1663
1669
. 10.2514/3.25266
28.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A New Approach for Reliability Analysis With Time-Variant Performance Characteristics
,”
Reliability Eng. Syst. Safety
,
115
(
1
), pp.
70
81
. 10.1016/j.ress.2013.02.017
29.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
. 10.1115/1.4007931
30.
Wang
,
P.
,
Wang
,
Z.
, and
Almaktoom
,
A. T.
,
2014
, “
Dynamic Reliability-Based Robust Design Optimization With Time-Variant Probabilistic Constraints
,”
Eng. Optim.
,
46
(
6
), pp.
784
809
. 10.1080/0305215X.2013.795561
31.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
. 10.1115/1.4033428
32.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
. 10.1115/1.4002200
33.
Hagen
,
Ø.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing As Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
. 10.1061/(ASCE)0733-9399(1991)117:10(2201)
34.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, Vol.
19
,
SIAM Press
,
Philadelphia, PA
.
35.
Jager
,
D.
, and
Andreas
,
A.
,
1996
,
NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)
. NREL Report DA-5500-56489.
36.
Alipour
,
A.
, and
Zareian
,
F.
,
2008
, “
Study Rayleigh Damping in Structures: Uncertainties and Treatments
,”
The 14th World Conference on Earthquake Engineering
,
Beijing, China
,
Oct. 12–17
.
You do not currently have access to this content.