Lamina emergent compliant mechanisms (including origami-adapted compliant mechanisms) are mechanical devices that can be fabricated from a planar material (a lamina) and have motion that emerges out of the fabrication plane. Lamina emergent compliant mechanisms often exhibit undesirable parasitic motions due to the planar fabrication constraint. This work introduces a type of lamina emergent torsion (LET) joint that reduces parasitic motions of lamina emergent mechanisms, and presents equations for modeling parasitic motion of LET joints. The membrane joint also makes possible one-way joints that can ensure origami-based mechanisms emerge from their flat state (a change point) into the desired configuration. Membrane-enhanced LET (M-LET) joints, including one-way surrogate folds, are described here and show promise for use in a wide range of compliant mechanisms and origami-based compliant mechanisms. They are demonstrated as individual joints and in mechanisms such as a kaleidocycle (a 6R Bricard linkage), degree-4 origami vertices (spherical mechanisms), and waterbomb base mechanisms (an 8R multi-degrees-of-freedom origami-based mechanism).

References

1.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsion (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.
2.
Nelson
,
T. G.
,
Lang
,
R. L.
,
Pehrson
,
N.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031006
.
3.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.
4.
Boehm
,
K. J.
,
Gibson
,
C. R.
,
Hollaway
,
J. R.
, and
Espinosa-Loza
,
F.
,
2016
, “
A Flexure-Based Mechanism for Precision Adjustment of National Ignition Facility Target Shrouds in Three Rotational Degrees of Freedom
,”
Fusion Sci. Technol.
,
70
(
2
), pp.
265
273
.
5.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2017
, “
Design and Analysis of Outside-Deployed Lamina Emergent Joint (OD-LEJ)
,”
Mech. Mach. Theory
,
114
, pp.
111
124
.
6.
Qiu
,
L.
,
Yin
,
S.
, and
Xie
,
T.
,
2016
, “
Failure Analysis and Performance Comparison of Triple-LET and LET Flexure Hinges
,”
Eng. Failure Anal.
,
66
, pp.
35
43
.
7.
Wilding
,
S. E.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2012
, “
Introduction of Planar Compliant Joints Designed for Compressive and Tensile Loading Conditions in Lamina Emergent Mechanisms
,”
Mech. Mach. Theory
,
56
, pp.
1
15
.
8.
Chen
,
G.
, and
Howell
,
L. L.
,
2018
, “
Symmetric Equations for Evaluating Maximum Torsion Stress of Rectangular Beams in Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
14
.
9.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
10.
Ku
,
J. S.
,
2017
, “
Folding Thick Materials Using Axially Varying Volume Trimming
,”
ASME
Paper No. DETC2017-67577.
11.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory
,
46
(
5
), pp.
680
706
.
12.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
.
13.
Hao
,
G.
,
2013
, “
Simplified PRBMs of Spatial Compliant Multi-Beam Modules for Planar Motion
,”
Mech. Sci.
,
4
(
2
), pp.
311
318
.
14.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam Constraint Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
.
15.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
16.
Ma
,
F.
,
Chen
,
G.
, and
Hao
,
G.
,
2018
, “
Determining the Range of Allowable Axial Force for the Third-Order Beam Constraint Model
,”
Mech. Sci.
,
9
(
1
), pp.
71
79
.
17.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
.
18.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
19.
Homer
,
E. R.
,
Harris
,
M. B.
,
Zirbel
,
S. A.
,
Kolodziejska
,
J. A.
,
Kozachkov
,
H.
,
Trease
,
B. P.
,
Borgonia
,
J. C.
,
Agnes
,
G. S.
,
Howell
,
L. L.
, and
Hofmann
,
D. C.
,
2014
, “
New Methods for Developing and Manufacturing Compliant Mechanisms Utilizing Bulk Metallic Glass
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
850
856
.
20.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME Press
, New York.
21.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
201
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)–Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
22.
Hao
,
G.
, and
Kong
,
X.
,
2013
, “
A Normalization-Based Approach to the Mobility Analysis of Spatial Compliant Multi-Beam Modules
,”
Mech. Mach. Theory
,
59
, pp.
1
19
.
23.
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
33
(
3
), pp.
268
274
.
24.
Safsten
,
C. A.
,
Fillmore
,
T. B.
,
Logan
,
A. E.
,
Halverson
,
D. M.
, and
Howell
,
L. L.
,
2016
, “
Analyzing the Stability Properties of Kaleidocycles
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051001
.
25.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.
26.
You
,
Z.
, and
Chen
,
Y.
,
2001
,
Motion Structures
,
Taylor and Francis
,
London
.
27.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I. M.
,
2014
, “
Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031002
.
28.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
29.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
30.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
31.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
von Lockette
,
P.
,
2015
, “
Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011010
.
32.
Crivaro
,
A.
,
Sheridan
,
R.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
Von Lockette
,
P.
,
2016
, “
Bistable Compliant Mechanism Using Magneto Active Elastomer Actuation
,”
J. Intell. Mater. Syst. Struct.
,
27
(
15
), pp.
2049
2061
.
33.
Qiu
,
C.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Repelling-Screw Based Force Analysis of Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031001
.
34.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc., A
,
472
(
2190
), p.
20150846
.
35.
Morgan
,
J.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2008
, “
A Preliminary Process for Origami-Adapted Design
,”
ASME
Paper No. DETC2015-47559.
36.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
37.
Machekposhti
,
D. F.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2015
, “
A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings
,”
ASME J. Mech. Des.
,
137
(
3
), p.
032301
.
38.
Haringx
,
J. A.
,
1949
, “
The Cross Spring Pivot as a Constructional Element
,”
Appl. Sci. Res., Sec. A
,
1
(
1
), pp.
313
332
.
39.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science
,
New York
.
40.
Chen
,
G.
,
Shao
,
X.
, and
Huang
,
X.
,
2008
, “
A New Generalized Model for Elliptical Arc Flexure Hinges
,”
Rev. Sci. Instrum.
,
79
(
9
), p.
095103
.
41.
Baker, J. E., 1986, “
Limiting Positions of a Bricard Linkage and Their Possible Relevance to the Cyclohexane Molecule
,”
Mech. Mach. Theory
,
21
(3), pp. 253–260.
You do not currently have access to this content.