Compliant mechanisms can be classified according to the number of their stable states and are called multistable mechanisms if they have more than one stable state. We introduce a new family of mechanisms for which the number of stable states is modified by programming inputs. We call such mechanisms programmable multistable mechanisms (PMM). A complete qualitative analysis of a PMM, the T-mechanism, is provided including a description of its multistability as a function of the programming inputs. We give an exhaustive set of diagrams illustrating equilibrium states and their stiffness as one programming input varies while the other is fixed. Constant force behavior is also characterized. Our results use polynomial expressions for the reaction force derived from Euler–Bernoulli beam theory. Qualitative behavior follows from the evaluation of the zeros of the polynomial and its discriminant. These analytical results are validated by numerical finite element method simulations.

References

1.
Harne
,
R.
, and
Wang
,
K.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
2.
Younesian
,
D.
, and
Alam
,
M.-R.
,
2017
, “
Multi-Stable Mechanisms for High-Efficiency and Broadband Ocean Wave Energy Harvesting
,”
Appl. Energy
,
197
, pp.
292
302
.
3.
Oberhammer
,
J.
,
Tang
,
M.
,
Liu
,
A.-Q.
, and
Stemme
,
G.
,
2006
, “
Mechanically Tri-Stable, True Single-Pole-Double-Throw (SPDT) Switches
,”
J. Micromech. Microeng.
,
16
(
11
), p.
2251
.
4.
Receveur
,
R. A.
,
Marxer
,
C. R.
,
Woering
,
R.
,
Larik
,
V. C.
, and
de Rooij
,
N.-F.
,
2005
, “
Laterally Moving Bistable MEMS DC Switch for Biomedical Applications
,”
J. Microelectromech. Syst.
,
14
(
5
), pp.
1089
1098
.
5.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.
6.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.
7.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
.
8.
Chen
,
G.
,
Liu
,
Y.
, and
Gou
,
Y.
,
2012
, “
A Compliant 5-Bar Tristable Mechanism Utilizing Metamorphic Transformation
,”
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
, London, pp.
233
242
.
9.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021005
.
10.
Chen
,
G.
, and
Du
,
Y.
,
2012
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011007
.
11.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.
12.
Zhao
,
J.
,
Huang
,
Y.
,
Gao
,
R.
,
Chen
,
G.
,
Yang
,
Y.
,
Liu
,
S.
, and
Fan
,
K.
,
2014
, “
Novel Universal Multistable Mechanism Based on Magnetic—Mechanical—Inertial Coupling Effects
,”
IEEE Trans. Ind. Electron.
,
61
(
6)
, pp.
2714
2723
.
13.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
, Hoboken, NJ.
14.
Cosandier, F., Henein, S., Richard, M., and Rubbert, L., 2017,
The Art of Exure Mechanism Design
, EPFL Press, Lausanne, Switzerland.
15.
Strogatz
,
S. H.
,
2014
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Westview Press
, Boulder, CO.
16.
Saif
,
M.
,
2000
, “
On a Tunable Bistable MEMS-Theory and Experiment
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
157
170
.
17.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
,
2009
, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101001
.
18.
Gerson
,
Y.
,
Krylov
,
S.
, and
Ilic
,
B.
,
2010
, “
Electrothermal Bistability Tuning in a Large Displacement Micro Actuator
,”
J. Micromech. Microeng.
,
20
(
11
), p.
112001
.
19.
Li
,
S.
, and
Wang
,
K.
,
2015
, “
Fluidic Origami With Embedded Pressure Dependent Multi-Stability: A Plant Inspired Innovation
,”
J. R. Soc. Interface
,
12
(
111
), p. 20150639.
20.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025011
.
21.
Zanaty
,
M.
,
2018
, “Programmable Multistable Mechanisms,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, EPFL, Lausanne, Switzerland.
22.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGrawHill-Kogakusha
,
Tokyo, Japan
.
23.
Birkhoff
,
G.
, and
Mac Lane
,
S.
,
1966
,
A Survey of Modern Algebra
, CRC Press, Boca Raton, FL.
24.
Bensimhoun
,
M.
,
2016
, “Historical Account and Ultra-Simple Proofs of Descartes’s Rule of Signs, De Gua, Fourier, and Budan’s Rule,” e-print
arXiv:1309.6664
.
25.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
, Hoboken, NJ.
26.
Herder
,
J.
,
2001
, “Free Energy System: Theory, Conception and Design of Statically Balanced Spring Mechanisms,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.
27.
Hao
,
G.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Can. Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
28.
Merkle
,
R. C.
,
1993
, “
Two Types of Mechanical Reversible Logic
,”
Nanotechnology
,
4
(
2
), p.
114
.
29.
Hafiz
,
M.
,
Kosuru
,
L.
, and
Younis
,
M. I.
,
2016
, “
Microelectromechanical Reprogrammable Logic Device
,”
Nat. Commun.
,
7
, p.
11137
.
30.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
,
2002
, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
,
12
(
3
), p.
257
.
31.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
32.
Zanaty
,
M.
,
Rogg
,
A.
,
Fussinger
,
T.
,
Lovera
,
A.
,
Baur
,
C.
,
Bellouard
,
Y.
, and
Henein
,
S.
,
2017
, “Safe Puncture Tool for Retinal Vein Cannulation,” Design of Medical Devices (
DMD
), Eindhoven, The Netherlands, Nov. 14–15.
You do not currently have access to this content.