Existing hybrid powertrain architectures, i.e., the connections from engine and motors to the vehicle output shaft, are designed for particular vehicle applications, e.g., passenger cars or city buses, to achieve good fuel economy. For effective electrification of new applications (e.g., heavy-duty trucks or racing cars), new architectures may need to be identified to accommodate the particular vehicle specifications and drive cycles. The exploration of feasible architectures is combinatorial in nature and is conventionally based on human intuition. We propose a mathematically rigorous algorithm to enumerate all feasible powertrain architectures, therefore enabling automated optimal powertrain design. The proposed method is general enough to account for single and multimode architectures as well as different number of planetary gears (PGs) and powertrain components. We demonstrate through case studies that our method can generate the complete sets of feasible designs, including the ones available in the market and in patents.

References

1.
Folkesson
,
A.
,
Andersson
,
C.
,
Alvfors
,
P.
,
Alaküla
,
M.
, and
Overgaard
,
L.
,
2003
, “
Real Life Testing of a Hybrid PEM Fuel Cell Bus
,”
J. Power Sources
,
118
(
1
), pp.
349
357
.
2.
Gao
,
D.
,
Jin
,
Z.
, and
Lu
,
Q.
,
2008
, “
Energy Management Strategy Based on Fuzzy Logic for a Fuel Cell Hybrid Bus
,”
J. Power Sources
,
185
(
1
), pp.
311
317
.
3.
Evans
,
D. G.
,
Polom
,
M. E.
,
Poulos
,
S. G.
,
Van Maanen
,
K. D.
, and
Zarger
,
T. H.
,
2003
, “
Powertrain Architecture and Controls Integration for GM's Hybrid Full-Size Pickup Truck
,” SAE Technical Paper No. 2003-01-0085.
4.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.
5.
Liu
,
J.
,
2007
, “
Modeling, Configuration and Control Optimization of Power-Split Hybrid Vehicles
,” Ph.D. thesis, Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI.
6.
Kicinger
,
R.
,
Arciszewski
,
T.
, and
Jong
,
K. D.
,
2005
, “
Evolutionary Computation and Structural Design: A Survey of the State-of-the-Art
,”
Comput. Struct.
,
83
(
23
), pp.
1943
1978
.
7.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
8.
Roth
,
B.
,
1967
, “
Finite-Position Theory Applied to Mechanism Synthesis
,”
ASME J. Appl. Mech.
,
34
(
3
), pp.
599
605
.
9.
Raghavan
,
M.
,
1989
, “
Analytical Methods for Designing Linkages to Match Force Specifications
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
10.
Koza
,
J. R.
,
Bennett
,
F. H.
, III
,
Andre
,
D.
,
Keane
,
M. A.
, and
Dunlap
,
F.
,
1997
, “
Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming
,”
IEEE Trans. Evol. Comput.
,
1
(
2
), pp.
109
128
.
11.
Schneider
,
G.
, and
Fechner
,
U.
,
2005
, “
Computer-Based De Novo Design of Drug-Like Molecules
,”
Nat. Rev. Drug Discovery
,
4
(
8
), pp.
649
663
.
12.
Wu
,
Z.
,
Campbell
,
M. I.
, and
Fernández
,
B. R.
,
2008
, “
Bond Graph Based Automated Modeling for Computer-Aided Design of Dynamic Systems
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041102
.
13.
Starling
,
A. C.
, and
Shea
,
K.
,
2005
, “
A Parallel Grammar for Simulation-Driven Mechanical Design Synthesis
,”
ASME
Paper No. DETC2005-85414.
14.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2000
, “
Agent-Based Synthesis of Electromechanical Design Configurations
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
61
69
.
15.
Hsieh
,
H.-I.
, and
Tsai
,
L.-W.
,
1996
, “
A Methodology for Enumeration of Clutching Sequences Associated With Epicyclic-Type Automatic Transmission Mechanisms
,” SAE Technical Paper No. 960719.
16.
Kahraman
,
A.
,
Ligata
,
H.
,
Kienzle
,
K.
, and
Zini
,
D.
,
2004
, “
A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1071
1081
.
17.
Conlon
,
B. M.
,
Savagian
,
P. J.
,
Holmes
,
A. G.
, and
Harpster
,
M. O.
,
2011
, “
Output Split Electrically-Variable Transmission With Electric Propulsion Using One or Two Motors
,” U.S. Patent No. 7,867,124.
18.
Sasaki
,
S.
,
1998
, “
Toyota's Newly Developed Hybrid Powertrain
,”
10th International Symposium on Power Semiconductor Devices and ICs
, IEEE Press, Kyoto, Japan, pp.
17
22
.
19.
Schmidt
,
M.
,
1996
, “
Two-Mode, Split Power, Electro-Mechanical Transmission
,” U.S. Patent No. 5,577,973.
20.
Schmidt
,
M.
,
1996
, “
Two-Mode, Input-Split, Parallel, Hybrid Transmission
,” U.S. Patent No. 5,558,588.
21.
Holmes
,
A.
, and
Schmidt
,
M.
,
2002
, “
Hybrid Electric Powertrain Including a Two-Mode Electrically Variable Transmission
,” U.S. Patent No. 6,478,705.
22.
Holmes
,
A.
,
Klemen
,
D.
, and
Schmidt
,
M.
,
2003
, “
Electrically Variable Transmission With Selective Input Split, Compound Split, Neutral and Reverse Modes
,” U.S. Patent No. 6,527,658.
23.
Ai
,
X.
, and
Anderson
,
S.
,
2005
, “
An Electro-Mechanical Infinitely Variable Transmission for Hybrid Electric Vehicles
,” SAE Technical Paper No. 2005-01-0281.
24.
Schmidt
,
M.
,
1999
, “
Two-Mode, Compound-Split Electro-Mechanical Vehicular Transmission
,” U.S. Patent No. 5,931,757.
25.
Raghavan
,
M.
,
Bucknor
,
N. K.
, and
Hendrickson
,
J. D.
,
2007
, “
Electrically Variable Transmission Having Three Interconnected Planetary Gear Sets, Two Clutches and Two Brakes
,” U.S. Patent No. 7,179,187.
26.
Zhang
,
X.
,
Li
,
C.-T.
,
Kum
,
D.
, and
Peng
,
H.
,
2012
, “
Prius+ and Volt−: Configuration Analysis of Power-Split Hybrid Vehicles With a Single Planetary Gear
,”
IEEE Trans. Veh. Technol.
,
61
(
8
), pp.
3544
3552
.
27.
Cheong
,
K. L.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2011
, “
Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles
,”
2011 American Control Conference
, IEEE Press, San Francisco, CA, pp.
3295
3300
.
28.
Zhang
,
X.
,
Li
,
S. E.
,
Peng
,
H.
, and
Sun
,
J.
,
2015
, “
Efficient Exhaustive Search of Power-Split Hybrid Powertrains With Multiple Planetary Gears and Clutches
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
12
), p.
121006
.
29.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2013
, “
Design of Hybrid-Electric Vehicle Architecture Using Auto-Generation of Feasible Driving Modes
,”
ASME
Paper No. DETC2013-13043.
30.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2015
, “
Decomposition Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME J. Mech. Des.
(accepted).
31.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2015
, “
Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME
Paper No. DETC2015-46861.
32.
Benford
,
H. L.
, and
Leising
,
M. B.
,
1981
, “
The Lever Analogy: A New Tool in Transmission Analysis
,” SAE Technical Paper No. 810102.
33.
Chatterjee
,
G.
, and
Tsai
,
L.-W.
,
1996
, “
Computer-Aided Sketching of Epicyclic-Type Automatic Transmission Gear Trains
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
405
411
.
34.
Kim
,
N.
,
Kim
,
J.
, and
Kim
,
H.
,
2008
, “
Control Strategy for a Dual-Mode Electromechanical, Infinitely Variable Transmission for Hybrid Electric Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
9
), pp.
1587
1601
.
35.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
, 5th ed.,
Wiley
,
Hoboken, NJ
.
36.
Read
,
R. C.
, and
Corneil
,
D. G.
,
1977
, “
The Graph Isomorphism Disease
,”
J. Graph Theory
,
1
(
4
), pp.
339
363
.
37.
Fortin
,
S.
,
1996
, “
The Graph Isomorphism Problem
,” University of Alberta, Edmonton, AB, Technical Report No. 96-20.
38.
McKay
,
B. D.
,
1981
, “
Practical Graph Isomorphism
,”
Congressus Numerantium
,
30
, pp.
45
87
.
39.
MATLAB
,
2014
, “
Graph Isomorphism
,” The MathWorks, Natick, MA.
40.
Bayrak
,
A. E.
,
2015
, “
Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design
,” Ph.D. thesis, Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI.
You do not currently have access to this content.