A high performance and cost effective biosensor is designed using a radial contour-mode disk resonator (RCDR). This sensor measures tiny biological mass attached on a disk vibrating at a high frequency, producing high quality of output signal. A series of analysis and simulation models is developed to predict the mass sensitivity, dynamic stability, and motional resistance of the RCDR biosensor with given geometry and signal input. In order to decrease motional resistance while keeping the fabrication cost low, a layer of dielectric material is deposited within the capacitor gap. In designing the RCDR biosensors, we employ Type I, II, and III robust design approach to design a device that is insensitive to various types of uncertainty associated with the fabrication processes and analysis models. A mathematical construct, error margin index, is employed for this robust design. Traditional optimization and robust design approaches are separately formulated, solved, and compared. From the design results, we observe that the RCDR is a promising bio-sensing device compared to the existing ones.

References

1.
Grieshaber
,
D.
,
MacKenzie
,
R.
,
Vörös
,
J.
, and
Reimhult
,
E.
, 2008, “
Electrochemical Biosensors-Sensor Principles and Architectures
,”
Sensors
,
8
(
3
), pp.
1400
1458
.
2.
Trojanowicz
,
M.
, 2009, “Main Concepts of Chemical and Biological Sensing,” Combinatorial Methods for Chemical and Biological Sensors, pp. 25–60.
3.
Janata
,
J.
, 2009,
Principles of Chemical Sensors
,
Springer
,
New York
.
4.
Hoummady
,
M.
,
Campitelli
,
A.
, and
Wlodarski
,
W.
, 1997, “
Acoustic Wave Sensors: Design, Sensing Mechanisms and Applications
,”
Smart Mater. Struct.
6
(
6
), pp.
647
657
.
5.
Koller-Lucae
,
S.
, 1999, “
Resonating Viscosity Sensors: Micro Versus Macro Approach
,” Ph.D. thesis, ETH, Zurich.
6.
Nirschl
,
M.
,
Blüher
,
A.
,
Erler
,
C.
,
Katzschner
,
B.
,
Vikholm-Lundin
,
I.
,
Auer
,
S.
,
Vörös
,
J.
,
Pompe
,
W.
,
Schreiter
,
M.
, and
Mertig
,
M.
, 2009, “
Film Bulk Acoustic Resonators for DNA and Protein Detection and Investigation of In Vitro Bacterial S-Layer Formation
,”
Sens. Actuators, A
,
156
(
1
), pp.
180
184
.
7.
Ogi
,
H.
,
Naga
,
H.
,
Fukunishi
,
Y.
,
Hirao
,
M.
, and
Nishiyama
,
M.
, 2009, “
170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement
,”
Anal. Chem.
,
81
(
19
), pp.
8068
8073
.
8.
Tigli
,
O.
, and
Zaghloul
,
M. E.
, 2010, “
Surface Acoustic Wave (SAW) Biosensors
,”
Proceedings of the 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)
, Seattle, WA, pp.
77
80
.
9.
Lazcka
,
O.
,
Campo
,
F. J. D.
, and
Muñoz
,
F. X.
, 2007, “
Pathogen Detection: A Perspective of Traditional Methods and Biosensors
,”
Biosens. Bioelectron.
,
22
(
7
), pp.
1205
1217
.
10.
Johnson
,
R. A.
, 1983,
Mechanical Filters in Electronics
,
Wiley
,
New York
.
11.
Clark
,
J. R.
,
Hsu
,
W. T.
,
Abdelmoneum
,
M. A.
, and
Nguyen
,
C. T. C.
, 2005, “
High-Q UHF Micromechanical Radial-Contour Mode Disk Resonators
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1298
1310
.
12.
Clark
,
J. R.
,
Abdelmoneum
,
M. A.
, and
Nguyen
,
C. T. C.
, 2003, “
UHF High-Order Radial-Contour-Mode Disk Resonators
,”
Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition Jointly With the 17th European Frequency and Time Forum
, Tampa, Florida, pp.
802
809
.
13.
Clark
,
J. R.
,
Wan-Thai
,
H.
, and
Nguyen
,
C. T. C.
, 2000, “
High-Q VHF Micromechanical Contour-Mode Disk Resonators
,”
Tech. Dig. – Int. Electron. Devices Meet.
, San Francisco, California, pp.
493
496
.
14.
Heitmann
,
V.
,
Reib
,
B.
, and
Wegener
,
J.
, 2007, “
The Quartz Crystal Microbalance in Cell Biology: Basics and Applications
,”
Piezoelectric Sensors
,
5
, pp.
303
338
.
15.
Ward
,
M. D.
, and
Delawski
,
E. J.
, 1991, “
Radial Mass Sensitivity of the Quartz Crystal Microbalance in Liquid Media
,”
Anal. Chem.
,
63
(
9
), pp.
886
890
.
16.
Xu
,
T.
,
Wang
,
Z.
,
Miao
,
J.
,
Yu
,
L.
, and
Li
,
C. M.
, 2008, “
Micro-Machined Piezoelectric Membrane-Based Immunosensor Array
,”
Biosens. Bioelectron.
,
24
(
4
), pp.
638
643
.
17.
Zuniga
,
C.
,
Rinaldi
,
M.
,
Khamis
,
S. M.
,
T. S., Jones
,
T. S.
,
Johnson
,
A. T.
, and
Piazza
,
G.
, 2009, “
DNA-Decorated Carbon Nanotubes as Sensitive Layer for AlN Contour-Mode Resonant-MEMS Gravimetric Sensor
,”
Proceedings of 22nd IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
, Sorrento, Italy, pp.
320
323
.
18.
Shavezipur
,
M.
,
Ponnambalam
,
K.
,
Khajepour
,
A.
, and
Hashemi
,
S. M.
, 2008, “
Fabrication Uncertainties and Yield Optimization in MEMS Tunable Capacitors
,”
Sens. Acutators, A
,
147
(
2
), pp.
613
622
.
19.
Dewey
,
A.
,
Ren
,
H.
, and
Zhang
,
T.
, 2000, “
Behavioral Modeling of Microelectromechanical Systems (MEMS) With Statistical Performance-Variability Reduction and Sensitivity Analysis
,”
IEEE Trans. Circuits Syst., II: Analog Digital Signal Process
,
47
(
2
), pp.
105
113
.
20.
Fan
,
Z.
,
Wang
,
J.
, and
Goodman
,
E.
, 2005, “
An Evolutionary Approach for Robust Layout Synthesis of MEMS
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, California, pp.
1186
1191
.
21.
Olivieri
,
M.
,
Scotti
,
G.
, and
Trifiletti
,
A.
, 2005, “
A Novel Yield Optimization Technique for Digital CMOS Circuits Design by Means of Process Parameters Run-Time Estimation and Body Bias Active Control
,”
IEEE Trans. Very Lagre Scale Integr. (VLSI) Syst.
,
13
(
5
), pp.
630
638
.
22.
Shavezipur
,
M.
,
Ponnambalam
,
K.
,
Hashemi
,
S. M.
, and
Khajepour
,
A.
, 2008, “
A Probabilistic Design Optimization for MEMS Tunable Capacitors
,”
Microelectron. J.
,
39
(
12
), pp.
1528
1533
.
23.
Sigmund
,
O.
, 2009, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Solida Sinica
,
25
(
2
), pp.
227
239
.
24.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. J.
, and
Mistree
,
F.
, 2006, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.
25.
Janshoff
,
A.
,
Galla
,
H.-J.
, and
Steinem
,
C.
, 2000, “
Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors?
,”
Angew. Chem.
,
39
(
22
), pp.
4004
4032
.
26.
Huang
,
S.
,
Yang
,
H.
,
Lakshmanan
,
R. S.
,
Johnson
,
M. L.
,
Wan
,
J.
,
Chen
,
I. H.
,
Wikle Iii
,
H. C.
,
Petrenko
,
V. A.
,
Barbaree
,
J. M.
, and
Chin
,
B. A.
, 2009, “
Sequential Detection of Salmonella Typhimurium and Bacillus Anthracis Spores Using Magnetoelastic Biosensors
,”
Biosens. Bioelectron.
,
24
(
6
), pp.
1730
1736
.
27.
Ivanovska
,
I. L.
,
de Pablo
,
P. J.
,
Ibarra
,
B.
,
Sgalari
,
G.
,
MacKintosh
,
F. C.
,
Carrascosa
,
J. L.
,
Schmidt
,
C. F.
, and
Wuite
,
G. J. L.
, 2004, “
Bacteriophage Capsids: Tough Nanoshells With Complex Elastic Properties
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
20
), pp.
7600
7605
.
28.
Jing
,
W.
,
Ren
,
Z.
, and
Nguyen
,
C. T. C.
, 2004, “
1.156-GHz Self-Aligned Vibrating Micromechanical Disk Resonator
,”
IEEE Trans. Ultrason. Eng.
,
51
(
12
), pp.
1607
1628
.
29.
Weinstein
,
D.
, and
Bhave
,
S. A.
, 2007, “
Internal Dielectric Transduction of a 4.5 GHz Silicon Bar Resonator
,”
IEEE International Electron Devices Meeting
,
IEEE
,
New York
, Vols.
1
and
2
, pp.
415
418
.
30.
Pourkamali
,
S.
,
Ho
,
G. K.
, and
Ayazi
,
F.
, 2007, “
Low-Impedance VHF and UHF Capacitive Silicon Bulk Acoustic-Wave Resonators; Part II: Measurement and Characterization
,”
IEEE Trans. Electron Devices
,
54
(
8
), pp.
2024
2030
.
31.
Khine
,
L.
, and
Palaniapan
,
M.
, 2009, “
High- Q Bulk-Mode SOI Square Resonators with Straight-Beam Anchors
,”
J. Micromech. Microeng.
,
19
(
1
), p.
015017
.
32.
Koester
,
D.
,
Cowen
,
A.
,
Mahadevan
,
R.
,
Stonefield
,
M.
, and
Hardy
,
B.
, 2003,
MUMPs Design Handbook
,
Cronos Integrated Microsystems
,
Research Triangle Park, NC
.
33.
Bangtao
,
C.
, and
Miao
,
J.
, 2007, “
Influence of Deep RIE Tolerances on Comb-Drive Actuator Performance
,”
J. Phys. D
,
40
(
4
), pp.
970
976
.
34.
Howatson
,
A. H.
, 1976,
An Introduction to Gas Discharges
,
Pergamom
,
New York
.
35.
Pai
,
S. T.
, and
Zhang
,
Q.
, 1995,
Introduction to High Power Pulse Technology
,
World Scientific
,
Singapore
.
36.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
37.
Marx
,
K. A.
, 2003, “
Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface
,”
Biomacromolecules
,
4
(
5
), pp.
1099
1120
.
38.
Shen
,
W.
,
Mathison
,
L. C.
,
Petrenko
,
V. A.
, and
Chin
,
B. A.
, 2010, “
Design and Characterization of a Magnetoelastic Sensor for the Detection of Biological Agents
,”
J. Phys. D
,
43
(
1
), pp.
015004
015013
.
39.
Bras
,
B.
, and
Mistree
,
F.
, 1995, “
A Compromise Decision Support Problem for Axiomatic and Robust Design
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
10
19
.
40.
Choi
,
H.-J.
,
Austin
,
R.
,
Allen
,
J. K.
,
McDowell
,
D. L.
,
Mistree
,
F.
, and
Benson
,
D. J.
, 2005, “
An Approach for Robust Design of Reactive Powder Metal Mixtures Based on Non-deterministic Micro-Scale Shock Simulation
,”
J. Comput.-Aided Mater. Des.
,
12
(
1
), pp.
57
85
.
41.
Zimmermann
,
C.
,
Rebiere
,
D.
,
Dejous
,
C.
,
Pistre
,
J.
, and
Planade
,
R.
, 2002, “
Love-Waves to Improve Chemical Sensors Sensitivity: Theoretical and Experimental Comparison of Acoustic Modes
,”
Proceedings of the IEEE International Frequency Control Symposium & PDA Exhibition
, New Orleans, Louisiana, pp.
281
288
.
You do not currently have access to this content.