Validation of computational models with multiple, repeated, and correlated functional responses for a dynamic system requires the consideration of uncertainty quantification and propagation, multivariate data correlation, and objective robust metrics. This paper presents a new method of model validation under uncertainty to address these critical issues. Three key technologies of this new method are uncertainty quantification and propagation using statistical data analysis, probabilistic principal component analysis (PPCA), and interval-based Bayesian hypothesis testing. Statistical data analysis is used to quantify the variabilities of the repeated tests and computer-aided engineering (CAE) model results. The differences between the mean values of test and CAE data are extracted as validation features, and the PPCA is employed to handle multivariate correlation and to reduce the dimension of the multivariate difference curves. The variabilities of the repeated test and CAE data are propagated through the data transformation to the PPCA space. In addition, physics-based thresholds are defined and transformed to the PPCA space. Finally, interval-based Bayesian hypothesis testing is conducted on the reduced difference data to assess the model validity under uncertainty. A real-world dynamic system example which has one set of the repeated test data and two stochastic CAE models is used to demonstrate this new approach.

References

1.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
, 2010,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
2.
Ferson
,
S.
,
Oberkampf
,
W. L.
, and
Ginzburg
,
L.
, 2008, “
Model Validation and Predictive Capability for the Thermal Challenge Problem
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
29–32
), pp.
2408
2430
.
3.
Oberkampf
,
W. L.
, and
Barone
,
M. F.
, 2006, “
Measures of Agreement Between Computation and Experiment: Validation Metrics
,”
J. Comput. Phys.
,
217
(
1
), pp.
5
36
.
4.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
, 2008, “
Verification and Validation Benchmarks
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
716
743
.
5.
Schwer
,
L. E.
, 2007, “
Validation Metrics for Response Histories: Perspectives and Case Studies
,”
Eng. Comput.
,
23
(
4
), pp.
295
309
.
6.
Fu
,
Y.
,
Zhan
,
Z.
, and
Yang
,
R. J.
, 2010, “A Study of Model Validation Method for Dynamic Systems,” Detroit, MI, April 12–15, SAE Paper No. 2010-01-0419.
7.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
, 2001, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B
,
63
(
3
), pp.
325
364
.
8.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
, 2004, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
,
85
(
1–3
), pp.
39
71
.
9.
Liu
,
Y.
,
Chen
,
W.
,
Arendt
,
P. D.
, and
Huang
,
H. Z.
, 2011, “
Towards a Better Understanding of Model Validation Metrics
,”
ASME J. Mech. Des.
,
133
(
7
), p.
0710051
.
10.
Arendt
,
P. D.
,
Chen
,
W.
, and
Apley
,
D. W.
, 2011, “Improving Identifiability in Model Calibration Using Multiple Responses,” Washington DC, August 28–31, Paper No. DETC2011-48623.
11.
Sarin
,
H.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Barbat
,
S.
, and
Yang
,
R. J.
, 2010, “
Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics
,”
J. Dyn. Syst., Meas., Control
,
132
, pp.
0614011
06140110
.
12.
Mahadevan
,
S.
, and
Rebba
,
R.
, 2005, “
Validation of Reliability Computational Models Using Bayes Networks
,”
Reliab. Eng. Syst. Saf.
,
87
(
2
), pp.
223
232
.
13.
Rebba
,
R.
, and
Mahadevan
,
S.
, 2006, “
Model Predictive Capability Assessment Under Uncertainty
,”
AIAA J.
,
44
(
10
), pp.
2376
2384
.
14.
Jiang
,
X.
, and
Mahadevan
,
S.
, 2007, “
Bayesian Risk-Based Decision Method for Model Validation Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
92
(
6
), pp.
707
718
.
15.
Jiang
,
X.
, and
Mahadevan
,
S.
, 2008, “
Bayesian Wavelet Method for Multivariate Model Assessment of Dynamical Systems
,”
J. Sound Vib.
,
312
(
4–5
), pp.
694
712
.
16.
Jiang
,
X.
,
Yang
,
R. J.
,
Barbat
,
S.
, and
Weerappuli
,
P.
, 2009, “
Bayesian Probabilistic PCA Approach for Model Validation of Dynamic Systems
,”
SAE Int. J. Mater. Manuf.
,
2
(
1
), pp.
555
563
.
17.
Tipping
,
M. E.
, and
Bishop
,
C. M.
, 1999, “
Probabilistic Principal Component Analysis
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.
),
61
(
3
), pp.
611
622
.
18.
Fu
,
Y.
,
Jiang
,
X.
, and
Yang
,
R. J.
, 2009, “Auto-Correlation of an Occupant Restraint System Model Using a Bayesian Validation Metric,” Detroit, MI, April 20–23, SAE Paper No. 2009-01-1402.
19.
Pai
,
Y.
, 2009, “
Investigation of Bayesian Model Validation Framework for Dynamic Systems
,” Master’s thesis, University of Michigan, Ann Arbor, MI.
20.
Pai
,
Y.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Pozolo
,
M.
,
Fu
,
Y.
, and
Yang
,
R. J.
, 2009, “
Assessment of a Bayesian Model and Test Validation Method
,”
2009 National Defense Industrial Association Ground Vehicle Systems Engineering and Technology Symposium
,
Troy
,
Michigan
(Short Paper), August
18
20
.
21.
Zhan
,
Z.
,
Fu
,
Y.
, and
Yang
,
R. J.
, 2011, “
An Enhanced Bayesian Based Model Validation Method for Dynamic Systems
,”
ASME J. Mech. Des.
,
133
(
4
), pp.
0410051
0410057
.
22.
Migon
,
H. S.
, and
Gamerman
,
D.
, 1999,
Statistical Inference—An Integrated Approach
,
Arnold, A Member of the Holder Headline Group
,
United Kingdom, London
.
23.
Kass
,
R.
, and
Raftery
,
A.
, 1995, “
Bayes Factors
,”
J. Am. Stat. Assoc.
,
90
(
430
), pp.
773
795
.
You do not currently have access to this content.