Collaborative optimization (CO) is a multidisciplinary design optimization (MDO) method with bilevel computational structure, which decomposes the original optimization problem into one system-level problem and several subsystem problems. The strategy of decomposition in CO is a useful way for solving large engineering design problems. However, the computational difficulties caused by the system-level consistency equality constraints hinder the development of CO. In this paper, an alternative formulation of CO called CO with combination of linear approximations (CLA-CO) is presented based on the geometric analysis of CO, which is more intuitive and direct than the previous algebraic analysis. In CLA-CO, the consistency equality constraints in CO are replaced by linear approximations to the subsystem responses. As the iterative process goes on, more linear approximations are added into the system level. Consequently, the combination of these linear approximations makes the system-level problem gradually approximate the original problem. In CLA-CO, the advantages of the decomposition strategy are maintained while the computational difficulties of the conventional CO are avoided. However, there are still difficulties in applying the presented CLA-CO to problems with nonconvex constraints. The application of CLA-CO to three optimization problems, a numerical test problem, a composite beam design problem, and a gear reducer design problem, illustrates the capabilities and limitations of CLA-CO.

References

1.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
, 1996, “
Multidisciplinary Aerospace Optimization: Survey of Recent Developments
,”
34th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
AIAA
1996
711
.
2.
Agte
,
J.
,
De Weck
,
O.
,
Sobieszczanski-Sobieski
,
J.
,
Arendsen
,
P.
,
Morris
,
A.
, and
Spieck
,
M.
, 2010, “
MDO: Assessment and Direction for Advancement—An Opinion of One International Group
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
17
33
.
3.
Kim
,
C.
, and
Choi
,
K. K.
, 2008, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121401
.
4.
Mullur
,
A. A.
, and
Messac
,
A.
, 2008, “
ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions
,”
SIAM J. Sci. Comput. (USA)
,
30
(
6
), pp.
3197
3219
.
5.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
, 2008, “
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031401
.
6.
Allison
,
J. T.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
, 2009, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081008
.
7.
Allison
,
J. T.
,
Roth
,
B.
,
Kokkolaras
,
M.
,
Kroo
,
I.
, and
Papalambros
,
P. Y.
, 2006, “
Aircraft Family Design Using Decomposition-Based Methods
,”
Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Portsmouth, VA
,
AIAA
2006
6950
.
8.
Khajavirad
,
A
,
Michalek
,
J. J.
, 2008, “
A Decomposed Gradient-Based Approach for Generalized Platform Selection and Variant Design in Product Family Optimization
,”
ASME J. Mech. Des.
,
130
(
7
), p.
071101
.
9.
Braun
,
R.
, 1996, “
Collaborative Optimization: An Architecture For Large-Scale Distributed Design
,” Ph.D. thesis, Stanford University, CA.
10.
Gu
,
X. Y.
,
Renaud
,
J. E.
, and
Penninger
,
C. L.
, 2006, “
Implicit Uncertainty Propagation for Robust Collaborative Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
1001
1013
.
11.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Tao
,
J.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME. J. Mech. Des.
,
125
(
3
), pp.
474
480
.
12.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2010, “
A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021003
.
13.
Tosserams
,
S.
,
Kokkolaras
,
M.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2010, “
A Nonhierarchical Formulation of Analytical Target Cascading
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051002
.
14.
McAllister
,
C. D.
, and
Simpson
,
T. W.
, 2003, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
124
130
.
15.
Lee
,
K. Y.
,
Roh
,
M. I.
, and
Cho
,
S.
, 2001, “
Multidisciplinary Design Optimisation of Mechanical Systems Using Collaborative Optimisation Approach
,”
Int. J. Veh. Des.
,
25
(
4
), pp.
353
368
.
16.
Budianto
,
I.
, and
Olds
,
J. R.
, 2004, “
Design and Deployment of a Satellite Constellation Using Collaborative Optimization
,”
J. Spacecr. Rockets
,
41
(
6
), pp.
956
963
.
17.
Kodiyalam
,
S.
, 1998, “
Evaluation of Methods for Multidisciplinary Design Optimization, Phase I
,”
NASA CR
1998
208716
.
18.
Cormier
,
T.
,
Scott
,
A.
,
Ledsinger
,
L.
,
McCormic
,
D.
,
Way
,
D.
, and
Olds
,
J.
, 2000, “
Comparison of Collaborative Optimization to Conventional Design Techniques for Conceptual RLV
,”
8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
AIAA
2000
4885
.
19.
Yi
,
S. I.
,
Shin
,
J. K.
, and
Park
,
G. J.
, 2008, “
Comparison of MDO Methods With Mathematical Examples
,”
Struct. Multidiscip. Optim
.,
35
(
5
), pp.
391
402
.
20.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2002, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
,
40
(
2
), pp.
301
309
.
21.
DeMiguel
,
A.V.
, and
Murray
,
W.
, 2000, “
An Analysis of Collaborative Optimization Methods
,”
8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
AIAA
2000
4720
.
22.
Zadeh
,
P. M.
,
Toropov
,
V. V.
, and
Wood
,
A. S.
, 2009, “
Metamodel-Based Collaborative Optimization Framework
,”
Struct. Multidiscip. Optim.
,
38
(
2
), pp.
103
111
.
23.
Braun
,
R. D.
,
Gage
,
P.
,
Kroo
,
I. M.
, and
Sobieski
,
I.
, 1996, “
Implementation and Performance Issues in Collaborative Optimization
,”
6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, Washington, AIAA–
1996
4017
.
24.
Jang
,
B. S.
,
Yang
,
Y. S.
,
Jung
,
H. S.
, and
Yeun
,
Y.-S.
, 2005, “
Managing Approximation Models in Collaborative Optimization
,”
Struct. Multidiscip. Optim.
,
30
(
1
) pp.
11
26
.
25.
Sobieski
,
I. P.
, and
Kroo
,
I. M.
, 2000, “
Collaborative Optimization Using Response Surface Estimation
,”
AIAA J.
,
38
(
10
), pp.
1931
1938.
26.
Roth
,
B. D.
, and
Kroo
,
I. M.
, 2008, “
Enhanced Collaborative Optimization: A Decomposition-Based Method for Multidisciplinary Design
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, New York
, pp.
927
936
.
27.
Li
,
X.
,
Li
,
W. J.
, and
Liu
,
C. A.
, 2008, “
Geometric Analysis of Collaborative Optimization
,”
Struct. Multidiscip. Optim.
,
35
(
4
), pp.
301
313
.
28.
Kobayashi
,
T.
, and
Kroo
,
I. M
, 2005, “
The New Effective MDO Method Based on Collaborative Optimization
,”
35th AIAA Fluid Dynamics Conference and Exhibit
,
Toronto, Ontario Canada
,
AIAA
2005
4799
.
29.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.
30.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
, 1989,
Parallel and Distributed Computation,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Azarm
,
S.
, and
Li
,
W. C.
, 1989, “
Multi-Level Design Optimization Using Global Monotonicity Analysis
,”
ASME J. Mech. Autom. Des.
,
111
(
2
), pp.
259
263
.
32.
Krishnamachari
,
R. S.
, and
Papalambros
,
P. Y.
, 1997, “
Optimal Hierarchical Decomposition Synthesis Using Integer Programming
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
440
447
.
33.
Balling
,
R. J.,
and
Wilkinson
,
C. A.
, 1997., “
Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems
,”
AIAA J.
,
35
(
1
), pp.
178
186
.
You do not currently have access to this content.