Many different additive manufacturing (AM) technologies enable the realization of prototypes and fully-functional artifacts. Although very different in solution principle and embodiment, significant functional commonality exists among the technologies. This commonality affords the authors an opportunity to propose a new classification framework for additive manufacturing technologies. Specifically, by following the systematic abstraction approach proposed by the design methodology of Pahl and Beitz, the authors first identify the working principles of each AM process. A morphological matrix is then employed to functionally present these principles such that commonalities between processes can be identified. In addition to using it as a means of classifying existing processes, the authors present the framework as a tool to aid a designer in the conceptual design of new additive manufacturing technologies. The authors close the paper with an example of such an implementation; specifically, the conceptual design of a novel means of obtaining metal artifacts from three-dimensional printing.

References

1.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
, 2003, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (Lm) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.
,
52
(
2
), pp.
589
609
.
2.
Kruth
,
J. P.
, 1991, “
Material Increase Manufacturing by Rapid Prototyping Techniques
,”
CIRP Ann. - Manuf. Technol.
,
40
(
2
), pp.
577
639
.
3.
Greul
,
M.
,
Petzoldt
,
F.
,
Greulich
,
M.
, and
Wunder
,
J.
, 1997, “
Rapid Prototyping Moves on Metal Powders
,”
Metal Powder Report
,
52
(
10
), pp.
24
27
.
4.
Pham
,
D. T.
, and
Gault
,
R. S.
, 1998, “
A Comparison of Rapid Prototyping Technologies
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
1257
1287
.
5.
Derby
,
B.
, and
Reis
,
N.
, 2003, “
Inket Printing of Highly Loaded Particulate Suspensions
,”
Mater. Res. Soc. Bull.
,
28
(
11
), pp.
815
818
.
6.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
, 2009,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
7.
Pahl
,
G.
, and
Beitz
,
W.
, 1996,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
8.
Kruth
,
J. P.
,
Mercelis
,
P.
,
Froyen
,
L.
, and
Rombouts
,
M.
, 2004, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
44
59
.
9.
Cormier
,
D.
,
Harrysson
,
O.
, and
West
,
H.
, 2004, “
Characterization of H13 Steel Produced Via Electron Beam Melting
,”
Rapid Prototyping J.
,
10
(
1
), pp.
35
41
.
10.
Michaels
,
S.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
, 1992, “
Metal Parts Generation by Three Dimensional Printing
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
244
250
.
11.
Greulich
,
M.
, 1997, “
Rapid Prototyping and Fabrication of Tools and Metal Parts by Laser Sintering of Metal Powders
,”
Mater. Technol.
,
12
(
5
), pp.
155
157
.
12.
Utela
,
B.
,
Anderson
,
R. L.
, and
Kuhn
,
H.
, 2006, “
Advanced Ceramic Materials and Three-Dimensional Printing (3dp)
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
290
303
.
13.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
Mcalea
,
K. P.
, 1997,
Solid Freeform Fabrication: A New Direction in Manufacturing
,
Kluwer Academic Publishers
,
Boston, Mass
.
14.
Evans
,
R. S.
,
Bourell
,
D. L.
,
Beaman
,
J.
, and
Campbell
,
M. I.
, 2005, “
Rapid Manufacturing of Silicon Carbide Composites
,”
Rapid Prototyping J.
,
11
(
1
), pp.
37
40
.
15.
Solidica, 2004, “
Solidica: Direct to Metal Aluminum Tooling for Advanced Manufacturing
,” www.solidica.com/technology.htmlwww.solidica.com/technology.html
16.
Bender
,
B. A.
,
Rayne
,
R. J.
, and
Jessen
,
T. L.
, 2001, “
Laminated Object Manufacturing of Functional Ceramics
,”
Ceram. Eng. Sci. Proc.
22
(
4
), pp.
127
134
.
17.
Das
,
A.
,
Madras
,
G.
,
Dasgupta
,
N.
, and
Umarji
,
A. M.
, 2003, “
Binder Removal Studies in Ceramic Thick Shapes Made by Laminated Object Manufacturing
,”
J. Eur. Ceram. Soc.
,
23
, pp.
1013
1017
.
18.
Liu
,
Z. E.
,
Ko
,
T. C.
,
Best
,
J.
,
Cawley
,
J. D.
, and
Heuer
,
A. H.
, 1997, “
Cam-Lem Processing: Materials Flexibility
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
379
382
.
19.
Himmer
,
T.
,
Nakagawa
,
T.
, and
Noguchi
,
H.
, 1997, “
Stereolithography of Ceramics
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
363
369
.
20.
3D Systems, 2007, “
3d Modeling & Desktop Prototyping with V-Flash
,” http://www.modelin3d.com/http://www.modelin3d.com/
21.
Agarwala
,
M. K.
,
Jamalabad
,
V. R.
,
Langrana
,
N. A.
,
Safari
,
A.
,
Whalen
,
P. J.
, and
Danforth
,
S. C.
, 1996, “
Structural Quality of Parts Processed by Fused Deposition
,”
Rapid Prototyping J.
,
2
(
4
), pp.
4
19
.
22.
Watson
,
J. K.
,
Taminger
,
K. M. B.
,
Hafley
,
R. A.
, and
Peterson
,
D. D.
, 2002, “
Development of a Prototype Electron Beam Freeform Fabrication System
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
458
465
.
23.
Greul
,
M.
,
Pintat
,
T.
, and
Greulich
,
M.
, 1996, “
Rapid Prototyping of Functional Metallic and Ceramic Parts Using the Multiphase Jet Solidification (MJS) Process
,”
Advances in Powder Metallurgy and Particulate Materials
,
Washington, DC
,
2
, pp.
7.281
7.287
.
24.
Rice
,
C. S.
,
Mendez
,
P. F.
, and
Brown
,
S. B.
, 2000, “
Metal Solid Freeform Fabrication Using Semi-Solid Slurries
,”
Member J. Miner., Met. Mater. Soc.
,
52
(
12
), pp.
31
33
.
25.
Orme
,
M.
,
Liu
,
Q.
, and
Smith
,
R.
, 2000, “
Molten Aluminum Micro-Droplet Formation and Deposition for Advanced Manufacturing Applications
,”
Alum. Trans. J.
,
3
(
1
), pp.
95
103
.
26.
Grau
,
J.
,
Moon
,
J.
,
Uhland
,
S.
,
Cima
,
M. J.
, and
Sachs
,
E.
, 1997, “
High Green Density Ceramic Components Fabricated by the Slurry-Based 3dp Process
,”
Metal Solid Freeform Fabrication Using Semi-Solid Slurries
, Austin, TX, pp.
371
378
.
27.
Huang
,
T.
,
Mason
,
M. S.
,
Hilmas
,
G. E.
, and
Leu
,
M. C.
, 2006, “
Freeze-Form Extrusion Fabrication of Ceramic Parts
,”
Int. J. Virtual Phys. Prototyping
,
1
(
2
), pp.
93
100
.
28.
Griffith
,
M. L.
, and
Halloran
,
J. W.
, 1994, “
Ultraviolet Curable Ceramic Suspensions for Stereolithography of Ceramics
,”
International Mechanical Engineering Congress and Exposition
, Chicago, IL, pp.
529
534
.
29.
Sirringhaus
,
H.
, and
Shimoda
,
T.
, 2003, “
Inkjet Printing of Functional Materials
,”
Mater. Res. Soc. Bull.
,
28
(
11
), pp.
802
806
.
30.
Johnson
,
R. W.
,
Park
,
J.-H.
,
Lackey
,
W. J.
, and
Rosen
,
D. W.
, 2003, “
Advances in Laser Chemical Vapor Depostion of Metals and Ceramics
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal.
31.
Crocker
,
J. E.
,
Lianchao
,
S.
,
Ansquer
,
H.
,
Shaw
,
L. L.
, and
Marcus
,
H. L.
, 1999, “
Processing and Characterization of Saldvi Ceramic Structures
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
495
501
.
32.
Morissette
,
S. L.
,
Lewis
,
J. A.
,
Cesarno
,
J.
,
Dimos
,
D. B.
, and
Baer
,
T.
, 2000, “
Solid Freeform Fabrication of Aqueous Alumina-Poly(Vinyl Alcohol) Gelcasting Suspensions
,”
J. Am. Ceram. Soc.
,
83
(
10
), pp.
2409
2416
.
33.
Khoshnevis
,
B.
,
Bukkapatnam
,
S.
,
Kwon
,
H.
, and
Saito
,
J.
, 2001, “
Experimental Investigation of Contour Crafting Using Ceramic Materials
,”
Rapid Prototyping J.
,
7
(
1
), pp.
32
41
.
34.
Vaidyanathan
,
R.
,
Lombardi
,
J. L.
,
Walish
,
J.
,
Kasichainula
,
S.
,
Calvert
,
P.
, and
Cooper
,
K.
, 1999, “
Extrusion Freeform Fabrication of Functional Ceramic Prototypes
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
327
334
.
35.
Li
,
X.
,
Choi
,
H.
, and
Yang
,
Y.
, 2002, “
Micro Rapid Prototyping System for Micro Components
,”
Thin Solid Films
,
420–421
, pp.
515
523
.
36.
Yang
,
S.
, and
Evans
,
J. R. G.
, 2004, “
Acoustic Control of Powder Dispensing in Open Tubes
,”
Powder Technol.
,
139
, pp.
55
60
.
37.
Percin
,
G.
, and
Khuri-Yakub
,
B. T.
, 2003, “
Piezoelectric Droplet for Ink-Jet Printing of Fluids and Solid Particles
,”
Rev. Sci. Instrum.
,
74
(
2
), pp.
1120
1127
.
38.
Lu
,
X.
,
Yang
,
S.
,
Chen
,
L.
, and
Evans
,
J. R. G.
, 2006, “
Dry Powder Microfeeding System for Solid Freeform Fabrication
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
636
643
.
39.
Sachs
,
E. M.
, 2000, “
Powder Dispensing Apparatus Using Vibration
,” U.S. Patent No. 6,036,777.
40.
Blazdell
,
P. F.
,
Evans
,
J. R. G.
,
Edirisinghe
,
M. J.
,
Shaw
,
P.
, and
Binstead
,
M. J.
, 1995, “
The Computer Aided Manufacture of Ceramics Using Multilayer Jet Printing
,”
J. Mater. Sci. Lett.
,
14
, pp.
1562
1565
.
41.
Slade
,
C. E.
, and
Evans
,
J. R. G.
, 1998, “
Freeforming Ceramics Using a Thermal Jet Printer
,”
J. Mater. Sci. Lett.
,
17
, pp.
1669
1671
.
42.
Kumar
,
A. V.
,
Dutta
,
A.
, and
Fay
,
J. E.
, 2004, “
Electrophotographic Printing of Part and Binder Powders
,”
Rapid Prototyping J.
,
10
(
1
), pp.
7
13
.
43.
Karlsen
,
R.
, and
Reitan
,
J.
, 2003, “
Metal Printing—Development of a New Rapid Manufacturing Process for Metal and Ceramic Objects
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, pp.
569
589
.
44.
Desktop Factory, 2007, “
Desktop Factory: 3d Printers
,” http://www.desktopfactory.com/http://www.desktopfactory.com/
45.
Hopkinson
,
N.
, and
Erasenthiran
,
P.
, 2004, “
High Speed Sintering—Early Research Into a New Rapid Manufacturing Process
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
312
320
.
46.
Thomas
,
H. R.
,
Hopkinson
,
N.
, and
Erasenthiran
,
P.
, 2007, “
High Speed Sintering—Continuing Research into a New Rapid Manufacturing Process
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
682
691
.
47.
Limaye
,
A.
, and
Rosen
,
D. W.
, 2006, “
Process Planning for Mask Projection Stereolithography
,”
Rapid Prototyping J.
,
12
(
5
), pp.
76
84
.
48.
White
,
D.
, and
Carmein
,
D. E. E.
, 2002, “
Ultrasonic Object Consolidation System and Method
,” U.S. Patent No. 6,463,349.
49.
Evans
,
J. R. G.
, 2001, “
Direct Ink Jet Printing of Ceramics: Experiment in Teleology
,”
Br. Ceram. Trans.
,
100
(
3
), pp.
124
128
.
50.
Fu
,
Q.
,
Jongprateep
,
O.
,
Abbott
,
A.
, and
Dogan
,
F.
, 2006, “
Freeze-Spray Processing of Layered Ceramic Composites
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
339
348
.
51.
Kruth
,
J. P.
,
Mercelis
,
P.
, and
Van Vaerenbergh
,
J.
, 2005, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
11
(
1
), pp.
26
36
.
52.
53.
Kruth
,
J. P.
,
Mercelis
,
P.
,
Vanvaerenbergh
,
J.
,
Froyen
,
L.
, and
Mrombouts
,
M.
, 2003, “
Advances in Selective Laser Sintering
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, pp.
59
69
.
54.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
, 1995, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
55.
Jardini
,
A. L.
,
Maciel
,
R.
,
Scarparo
,
M. A.
,
Andrade
,
S. R.
, and
Moura
,
L. F.
, 2003, “
The Development in Infrared Stereolithography Using Thermosensitive Polmers
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, pp.
273
277
.
56.
Geving
,
B.
,
Kataria
,
A.
,
Moore
,
C.
,
Ebert-Uphoff
,
I.
,
Kurfess
,
T. R.
, and
Rosen
,
D. W.
, 2000, “
Conceptual Design of a Generalized Stereolithography Machine
,”
Japan-USA Symposium on Flexbile Automation
, Ann Arbor, MI.
57.
Clarinval
,
A.
,
Carrus
,
R.
, and
Dormal
,
T.
, 2003, “
Development of Material for Optoform Process
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, pp.
279
282
.
58.
Stratasys, 2007, “
The Added Convenience of Waterworks
,” February 2007, http://www.stratasys.com/systems_misc.aspx?id=132http://www.stratasys.com/systems_misc.aspx?id=132
59.
Mott
,
M.
,
Song
,
J. H.
, and
Evans
,
J. R. G.
, 1999, “
Microengineering of Ceramics by Direct Ink-Jet Printing
,”
J. Am. Ceram. Soc.
,
82
(
7
), pp.
1653
1658
.
60.
Hedges
,
M.
, and
Keicher
,
D. M.
, 2002, “
Laser Engineered Net Shaping—Technology and Applications
,”
C. E.
Bocking
, et al.
,
3rd National Conference on Rapid Prototyping, Rapid Tooling, and Rapid Manufacturing
, Buckinghamshire, UK, pp.
17
23
.
61.
Zwicky
,
F.
, 1967, “
The Morphological Approach to Discovery, Invention, Research and Construction
,”
New Methods of Thought and Procedure
,
Springer-Verlag
,
New York
, pp.
273
297
.
62.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
, 2005, “
Investigation of Solid Freeform Fabrication Processes for the Manufacture of Parts With Designed Mesostructure
,”
ASME IDETC Design for Manufacturing and the Life Cycle Conference
, Long Beach, California, DETC2005/DFMLC-84832.
63.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
, 2005, “
Towards the Design of a Layer-Based Additive Manufacturing Process for the Realization of Metal Parts of Designed Mesostructure
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
217
230
.
64.
Seepersad
,
C. C.
,
Kumar
,
R. S.
,
Allen
,
J. K.
,
Mistree
,
F. M.
, and
Mcdowell
,
D. L.
, 2004, “
Multifunctional Design of Prismatic Cellular Materials
,”
J. Comput.-Aided Mater. Des.
,
11
(
2
), pp.
163
181
.
65.
Wang
,
H. V.
,
Johnston
,
S. R.
, and
Rosen
,
D. W.
, 2006, “
Design of a Graded Cellular Structure for an Acetabular Hip Replacement Component
,”
International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
111
123
.
66.
Wang
,
H.
, and
Rosen
,
D. W.
, 2002, “
Computer-Aided Design Methods for Additive Fabrication of Truss Structures
,”
International Conference on Manufacturing Automation
, Hong Kong.
67.
Cochran
,
J. K.
,
Lee
,
K. J.
,
Mcdowell
,
D. L.
, and
Sanders
,
T. H.
, 2002, “
Multifunctional Metallic Honeycombs by Thermal Chemical Processing
,”
Processing and Properties of Lightweight Cellular Metals and Structures (TMS)
,
Seattle, WA
, pp.
127
136
.
68.
Lewis
,
J. A.
, 2000, “
Colloidal Processing of Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
10
), pp.
2341
2359
.
69.
Grida
,
I.
, and
Evans
,
J. R. G.
, 2003, “
Extrusion Freeforming of Ceramics Through Fine Nozzles
,”
J. Eur. Ceram. Soc.
,
23
, pp.
629
635
.
70.
Hinczewski
,
C.
,
Corbel
,
S.
, and
Chartier
,
T.
, 1998, “
Stereolithography for the Fabrication of Ceramic Three-Dimensional Parts
,”
Rapid Prototyping J.
,
4
(
3
), pp.
104
111
.
71.
Williams
,
C. B.
, and
Rosen
,
D. W.
, 2007, “
Manufacturing Cellular Materials via Three-Dimensional Printing of Spray-Dried Metal Oxide Ceramic Powder
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal.
72.
Williams
,
C. B.
, 2008, “
Design and Development of a Layer-Based Additive Manufacturing Process for the Realization of Metal Parts of Designed Mesostructure
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
73.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
, 2008, “
The Systematic Design of a Layered Manufacturing Process for the Realization of Metal Parts of Designed Mesostructure
,”
ASME International Design Engineering Technical Conferences
, Brooklyn, NY, DETC2004/DEC-49457.
You do not currently have access to this content.