A novel free piston expander (FPE) has been designed and modeled for energy sustainability applications. Specifically, the device has been designed to produce power from low-temperature energy sources as part of a larger low-temperature steam system. Due to the needs imposed by sustainability applications, the FPE was designed with two membranes: the first, a primary power output membrane and, the second, a regenerative membrane capable of mechanical energy recapture during the FPE cycle. The FPE model was studied under a variety of conditions. Different membrane sizes were shown to alter FPE performance considerably. Using 10 mm side length membranes, modeling showed that up to 25.6 mW of FPE power output was possible. The gap between the sliding free piston and its surrounding bore was examined using various fluids and gap geometries to simulate friction losses. By reducing fluid viscosity or increasing piston/bore gap, the energy lost to fluid shear was minimized. This resulted in improved energy recapture via the regenerative membrane. Various piston masses and materials were also considered. Decreasing piston mass reduced piston stroke length and increased frequency of operation. This resulted in an increased power output. The energy recapture capability of the FPE showed approximately 88% to 90% effectiveness for most of the scenarios considered in this work.

1.
Davis
,
S.
,
Diegel
,
S.
, and
Boundy
,
R.
, 2008,
Transportation Energy Data Book
, 27th ed.,
U.S. Department of Energy
,
Washington, DC
.
2.
Heywood
,
J.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
3.
Song
,
H. J.
,
Choi
,
Y. T.
,
Wang
,
G.
, and
Wereley
,
N. M.
, 2009, “
Energy Harvesting Utilizing Single Crystal PMN-PT Material and Application to a Self-Powered Accelerometer
,”
ASME J. Mech. Des.
0161-8458,
131
(
9
), p.
091008
.
4.
Beeby
,
S.
,
Tudor
,
M.
, and
White
,
N.
, 2006, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
0957-0233,
17
(
12
), pp.
R175
R195
.
5.
Shen
,
D.
,
Park
,
J. -H.
,
Ajitsaria
,
J.
,
Choe
,
S. -Y.
,
Wikle
,
H. C.
, and
Kim
,
D. -J.
, 2008, “
The Design, Fabrication and Evaluation of a MEMS PZT Cantilever With an Integrated Si Proof Mass for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
0960-1317,
18
(
5
), pp.
055017
.
6.
Morris
,
D. J.
,
Youngsman
,
J. M.
,
Anderson
,
M. J.
, and
Bahr
,
D. F.
, 2008, “
A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism
,”
Smart Mater. Struct.
0964-1726,
17
(
6
), pp.
065021
.
7.
Youngsman
,
J. M.
,
Luedeman
,
T.
,
Morris
,
D. J.
,
Anderson
,
M. J.
, and
Bahr
,
D. F.
, 2010, “
A Model for an Extensional Mode Resonator Used as a Frequency-Adjustable Vibration Energy Harvester
,”
J. Sound Vib.
0022-460X,
329
(
3
), pp.
277
288
.
8.
Deshpande
,
M.
, and
Saggere
,
L.
, 2005, “
Modeling and Design of an Optically Powered Microactuator for a Microfluidic Dispenser
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
825
836
.
9.
Lee
,
J.
,
Chen
,
Z.
,
Allen
,
M.
,
Rohatgi
,
A.
, and
Arya
,
R.
, 1995, “
A Miniaturized High-Voltage Solar Cell Array as an Electrostatic MEMS Power Supply
,”
J. Microelectromech. Syst.
1057-7157,
4
(
3
), pp.
102
108
.
10.
Ohsawa
,
J.
,
Shono
,
K.
, and
Hiei
,
Y.
, 2002, “
High-Voltage Micro Solar Cell Arrays of GaAS With Output Voltage Up to 100 V
,”
Optical MEMs 2002, Conference Digest, IEEE/LEOS International Conference
, pp.
103
104
.
11.
Strasser
,
M.
,
Aigne
,
R.
,
Lauterhach
,
C.
,
Stvr
,
T. F.
,
Franosch
,
M.
, and
Wachutka
,
G.
, 2003, “
Micromachined CMOS Thermoelectric Generators as On-Chip Power Supply
,”
TRANSDUCERS ‘03, The 12th International Conference on Solid State Sensors, Actuators, and Microsystems
, Boston, MA, Jun 8–12, pp.
45
48
.
12.
Leonov
,
V.
,
Fiorini
,
P.
,
Sedky
,
S.
,
Torfs
,
T.
, and
Hoof
,
C. V.
, 2005, “
Thermoelectric MEMS Generators as a Power Supply for a Body Area Network
,”
TRANSDUCERS ‘05, The 13th International Conference on Solid State Sensors, Actuators, and Microsystems
, Seoul, Korea, Jun 5–9, 2005, pp.
291
294
.
13.
Wang
,
W.
,
Jia
,
F.
,
Huang
,
Q.
, and
Zhang
,
J.
, 2005, “
A New Type of Low Power Thermoelectric Micro-Generator Fabricated by Nanowire Array Thermoelectric Material
,”
Microelectron. Eng.
0167-9317,
77
, pp.
223
229
.
14.
Gould
,
C.
,
Shammas
,
N.
,
Granger
,
S.
, and
Taylor
,
I.
, 2008, “
A Comprehensive Review of Thermoelectric Technology, Micro-Electrical, and Power Generation Properties
,”
Proceedings of the 26th International Conference on Microelectronics
, pp.
329
332
.
15.
Hung
,
T.
, 2001, “
Waste Heat Recovery of Organic Rankine Cycle Using Dry Fluids
,”
Energy Convers. Manage.
0196-8904,
42
, pp.
539
553
.
16.
Liu
,
B.
,
Chien
,
K.
, and
Wang
,
C.
, 2004, “
Effect of Working Fluids on Organic Rankine Cycle For Waste Heat Recovery
,”
Energy
0360-5442,
29
, pp.
1207
1217
.
17.
Yamamoto
,
T.
,
Furuhata
,
T.
,
Arai
,
N.
, and
Mori
,
K.
, 2001, “
Design and Testing of the Organic Rankine Cycle
,”
Energy
0360-5442,
26
, pp.
239
251
.
18.
Epstein
,
A. H.
,
Jacobson
,
S. A.
,
Protz
,
J. M.
, and
Frechette
,
L. G.
, 2000, “
Shirt Button-Sized Gas Turbines: The Engineering Challenges of Micro High Speed Rotating Machinery
,”
Proceedings of the Eighth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC ‘08)
, Honolulu, HI.
19.
Weiss
,
L.
,
Cho
,
J.
,
McNeil
,
K.
,
Bahr
,
D.
,
Richards
,
C.
, and
Richards
,
R.
, 2006, “
Characterization of a Dynamic Micro Heat Engine With Integrated Thermal Switch
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
S262
S269
.
20.
Weiss
,
L.
, 2009, “
Resonant Operation and Cycle Work From a MEMS-Based Micro-Heat Engine
,”
Microsyst. Technol.
0946-7076,
15
(
3
), pp.
485
492
.
21.
Mikalsen
,
R.
, and
Roskilly
,
A.
, 2007, “
A Review of Free-Piston Engine History and Applications
,”
Appl. Therm. Eng.
1359-4311,
27
(
14–15
), pp.
2339
2352
.
22.
Aichlmayr
,
H.
,
Kittelson
,
D.
, and
Zachariah
,
M.
, 2002, “
Miniature Free-Piston Homogenious Charge Compression Ignition Engine-Compressor Concept—Part 1: Performance Estimation and Design Considerations Unique to Small Dimensions
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
4161
4171
.
23.
Aichlmayr
,
H. T.
,
Kittelson
,
D. B.
, and
Zachariah
,
M. R.
, 2003, “
Micro-HCCI Combustion: Experimental Characterization and Development of a Detailed Chemical Kinetic Model With Coupled Piston Motion
,”
Combust. Flame
0010-2180,
135
(
3
), pp.
227
248
.
24.
Aichlmayr
,
H. T.
,
Kittelson
,
D.
, and
Zachariah
,
M.
, 2002, “
Miniature Free-Piston Homogenious Charge Compression Ignition Engine-Compressor Concept—Part 2: Modeling HCCI Combustion in Small Scales With Detailed Homogeneous Gas Phase Chemical Kinetics
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
4173
4186
.
25.
Miesse
,
C.
,
Masel
,
R.
,
Jensen
,
C.
,
Shannon
,
M.
, and
Short
,
M.
, 2004, “
Submillimeter-Scale Combustion
,”
AIChE J.
0001-1541,
50
(
12
), pp.
3206
3214
.
26.
Fernandez-Pello
,
A. C.
, 2002, “
Micropower Generation Using Combustion: Issues and Approaches
,”
Proc. Combust. Inst.
1540-7489,
29
(
1
), pp.
883
899
.
27.
Lee
,
D.
,
Park
,
D.
,
Yoon
,
J.
,
Kwon
,
S.
, and
Yoon
,
E.
, 2002, “
Fabrication and Test of a MEMS Combustor and Reciprocating Device
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
26
34
.
28.
Judy
,
J.
, 2001, “
Microelectromechanical Systems (MEMS): Fabrication, Design, and Applications
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
1115
1134
.
29.
Prather
,
K.
,
Hemphill
,
H.
,
Pjescic
,
I.
,
Tranter
,
C.
,
Dorton
,
J.
,
Elliott
,
F.
, and
Weiss
,
L.
, 2009, “
Novel MEMS-Based Boiler Development for Low Temperature Applications
,”
ASME
Paper No. IMECE2009-10500.
30.
Hemphill
,
H.
,
Maharjan
,
S.
,
Fang
,
J.
, and
Weiss
,
L.
, 2010, “
Waste Heat Use Through Microfabrication and Micro System Development
,”
ASME
Paper No. ES2010-90197.
31.
Robinson
,
M.
,
Morris
,
D.
,
Hayenga
,
P.
,
Cho
,
J.
,
Richards
,
C.
,
Richards
,
R.
, and
Bahr
,
D.
, 2006, “
Structural and Electrical Characterization of PZT on Gold for Micromachined Piezoelectric Membranes
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
85
, pp.
135
140
.
32.
Weiss
,
L.
, 2008, “
A Novel MEMS-based Micro Heat Engine and Operating Cycle
,” Ph.D. thesis, Washington State University, Pullman, WA.
33.
Robinson
,
M.
, 2007, “
Microstructural and Geometric Effects on the Piezoelectric Performance of PZT MEMS
,” Ph.D. thesis, Washington State University, Pullman, WA.
34.
Vlassak
,
J.
, and
Nix
,
W.
, 1992, “
A New Bulge Test Technique for the Determination of Young’s Modulus Ratio of Thin Film
,”
J. Mater. Res.
0884-2914,
7
(
12
), pp.
3242
3249
.
35.
Kreyszig
,
E.
, 1999,
Advanced Engineering Mathematics
, 8th ed.,
Wiley
,
New York
.
36.
Weiss
,
L.
,
Cho
,
J.
,
Morris
,
D.
,
Bahr
,
D.
,
Richards
,
C.
, and
Richards
,
R.
, 2006, “
A MEMS-Based Micro Heat Engine With Integrated Thermal Switch
,”
ASME
Paper No. IMECE2006-15042.
37.
Ferguson
,
C.
, and
Kirkpatrick
,
A.
, 2001,
Internal Combustion Engines
, 2nd ed.,
Wiley
,
New York
.
38.
Kenny
,
T.
,
Goodson
,
K.
,
Santiago
,
J.
,
Wang
,
E.
,
Koo
,
J.
,
Jiang
,
L.
,
Pop
,
E.
,
Sinha
,
S.
,
Zhang
,
L.
,
Fogg
,
D.
,
Yao
,
S.
,
Flynn
,
R.
,
Chang
,
C.
, and
Hidrovo
,
C.
, 2006, “
Advanced Cooling Technologies for Microprocessors
,”
Int. J. High Speed Electron. Syst.
0129-1564,
16
(
1
), pp.
301
313
.
39.
Singh
,
R.
,
Akbarzadeh
,
A.
,
Dixon
,
C.
,
Moshizuki
,
M.
, and
Riehl
,
R.
, 2007, “
Miniature Loop Heat Pipe With Flat Evaporator for Cooling Computer CPU
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
30
(
1
), pp.
42
49
.
40.
Wang
,
E.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J. -M.
,
Maveety
,
J.
,
Sanchez
,
E.
,
Goodson
,
K.
, and
Kenny
,
T.
, 2004, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
833
842
.
You do not currently have access to this content.