Predictive modeling can be a valuable tool for systems designers, allowing them to capture and reuse knowledge from a set of observed data related to their system. An important challenge associated with predictive modeling is that of describing the domain over which model predictions are valid. This is necessary to avoid extrapolating beyond the original data, particularly when designers use predictive models in concert with optimizers or other computational routines that search a model’s input space automatically. The general problem of domain description is complicated by the characteristics of observational data sets, which can contain small numbers of samples, can have nonlinear associations among the variables, can be nonconvex, and can occur in disjoint clusters. Support vector machine (SVM) techniques, developed originally in the machine learning community, offer a solution to this problem. This paper is a description of a kernel-based SVM approach that yields a formal mathematical description of the valid input domain of a predictive model. The approach also provides for cluster analysis, which can lead to improved model accuracy through the decomposition of a data set into multiple subsets that designers can model independently. This paper includes a mathematical presentation of kernel-based SVM methods, an explanation of the procedure for applying the approach to predictive modeling problems, and illustrative examples for applying and using the approach in systems design.

1.
Han
,
J.
, and
Kamber
,
M.
, 2001,
Data Mining: Concepts and Techniques
,
Morgan Kaufmann
,
San Francisco, CA
.
2.
Hand
,
D. J.
,
Mannila
,
H.
, and
Smyth
,
P.
, 2001,
Principles of Data Mining
,
MIT
,
Cambridge, MA
.
3.
Rygielski
,
C.
,
Wang
,
J. -C.
, and
Yen
,
D.
, 2002, “
Data Mining Techniques for Customer Relationship Management
,”
Technol. Soc.
0160-791X,
24
(
4
), pp.
483
502
.
4.
Geisser
,
S.
, 1982, “
Aspects of the Predictive and Estimative Approaches in the Determination of Probabilities
,”
Biometrics
0006-341X,
38
, pp.
75
85
.
5.
Geisser
,
S.
, 1993,
Predictive Inference: An Introduction
,
Chapman and Hall
,
New York
.
6.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
7.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
370
380
.
8.
Dean
,
J.
, 1976,
Statistical Cost Estimation
,
Indiana University Press
,
Bloomington, IN
.
9.
Daschbach
,
J. M.
, and
Apgar
,
H.
, 1988, “
Design Analysis Through Techniques of Parametric Cost Estimation
,”
Eng. Costs Prod. Econ.
,
14
(
2
), pp.
87
93
.
10.
Smith
,
A. E.
, and
Mason
,
A. K.
, 1997, “
Cost Estimation Predictive Modeling: Regression Versus Neural Network
,”
Eng. Econ.
0013-791X,
42
(
2
), pp.
137
161
.
11.
Farineau
,
T.
,
Rabenasolo
,
B.
,
Castelain
,
J. M.
,
Meyer
,
Y.
, and
Duverlie
,
P.
, 2001, “
Use of Parametric Models in an Economic Evaluation Step During the Design Phase
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
17
(
2
), pp.
79
86
.
12.
Seo
,
K. -K.
,
Park
,
J. -H.
,
Jang
,
D. -S.
, and
Wallace
,
D.
, 2002, “
Approximate Estimation of the Product Life Cycle Cost Using Artificial Neural Networks in Conceptual Design
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
(
6
), pp.
461
471
.
13.
Shabani
,
M. R.
, and
Yekta
,
R. B.
, 2006, “
Chemical Process Equipment Cost Estimation Using Parametric Models
,”
Coastal Eng.
0378-3839,
48
(
5
), pp.
26
32
.
14.
Dewulf
,
W.
, 2003, “
A Pro-Active Approach to Ecodesign: Framework and Tools
,” Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium.
15.
Garneau
,
C. J.
, and
Parkinson
,
M. B.
, 2009, “
Including Preference in Anthropometry-Driven Models for Design
,”
ASME J. Mech. Des.
0161-8458,
131
(
10
), p.
101006
.
16.
Krus
,
P.
, 2005, “
Estimation Models for Concept Optimisation of Power Transformation and Transmission
,”
The Ninth Scandinavian International Conference on Fluid Power (SICFP’05)
, Linkoping, Sweden.
17.
Malak
,
R. J.
,
Tucker
,
L.
, and
Paredis
,
C. J. J.
, 2009, “
Compositional Modeling of Fluid Power Systems Using Predictive Tradeoff Models
,”
Int. J. Fluid Power
1439-9776,
10
(
2
), pp.
45
55
.
18.
Wood
,
W. H.
, and
Agogino
,
A. M.
, 2005, “
Decision-Based Conceptual Design: Modeling and Navigation of Heterogeneous Design Spaces
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
2
11
.
19.
Wood
,
W. H.
, and
Dong
,
H.
, 2006, “
Generating Design Alternatives Across Abstraction Levels
,”
Decision Making in Engineering Design
,
ASME
,
New York
.
20.
Malak
,
R. J.
,
Tucker
,
L.
, and
Paredis
,
C. J. J.
, 2008, “
Composing Tradeoff Models for Multi-Attribute System-Level Decision Making
,”
ASME
Paper No. DETC2008-49970.
21.
Hume
,
D.
, 1965,
A Treatise of Human Nature
,
Clarendon
,
Oxford
, pp.
1739
1740
.
22.
Schlesinger
,
S.
,
Crosbie
,
R. E.
,
Innis
,
G. S.
,
Lalwani
,
C. S.
,
Loch
,
J.
,
Sylvester
,
R. J.
,
Wright
,
R. O.
,
Kheir
,
N.
, and
Bartos
,
D.
, 1979, “
Terminology for Model Credibility
,”
Simulation
0037-5497,
32
(
3
), pp.
103
104
.
23.
Balci
,
O.
, 1997, “
Principles of Simulation Model Validation, Verification and Testing
,”
Trans. Soc. Comput. Simul. Int.
0740-6797,
14
(
1
), pp.
3
12
.
24.
Kleindorfer
,
G. B.
,
O’Neill
,
L.
, and
Ganeshan
,
R.
, 1998, “
Validation in Simulation: Various Positions in the Philosophy of Science
,”
Manage. Sci.
0025-1909,
44
(
8
), pp.
1087
1099
.
25.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
, 2007, “
Validating Behavioral Models for Reuse
,”
Res. Eng. Des.
0934-9839,
18
(
3
), pp.
111
128
.
26.
AIAA
, 1998, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” American Institute of Aeronautics and Astronautics Technical Report No. AIAA-G-077-1998.
27.
ASME
, 2006, “
Guide for Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers Technical Report No. ASME V&V 10-2006.
28.
US DoD
, 2003, “
DoD Modeling and Simulation (M&S) Verification, Validation and Accreditation (VV&A)
,” United States Department of Defense Instruction No. 5000.61.
29.
Tarassenko
,
L.
,
Hayton
,
P.
,
Cerneaz
,
N.
, and
Brady
,
M.
, 1995, “
Novelty Detection for the Identification of Masses in Mammograms
,”
Fourth International Conference on Artificial Neural Networks
, Cambridge, UK, pp.
442
447
.
30.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H. T.
, 1996, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
0098-3500,
22
(
4
), pp.
469
483
.
31.
Vapnik
,
V.
, 1995,
The Nature of Statistical Learning Theory
,
Springer
,
New York
.
32.
Tax
,
D. M. J.
, and
Duin
,
R. P. W.
, 1999, “
Support Vector Domain Description
,”
Pattern Recogn. Lett.
0167-8655,
20
, pp.
1191
1199
.
33.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
, 2009, “
Using Support Vector Machines to Formalize the Valid Input Domain of Models in Data-Driven Predictive Modeling for Systems Design
,”
ASME
Paper No. DETC2009-87376.
34.
Scholkopf
,
B.
, and
Smola
,
J. A.
, 2002,
Learning With Kernels
,
MIT
,
Cambridge, MA
.
35.
Filippone
,
M.
,
Camastra
,
F.
,
Masulli
,
F.
, and
Rovetta
,
S.
, 2008, “
A Survey of Kernel and Spectral Methods for Clustering
,”
Pattern Recogn.
0031-3203,
41
(
1
), pp.
176
190
.
36.
Aizerman
,
M.
,
Braverman
,
E.
, and
Rozonoer
,
L.
, 1964, “
Theoretical Foundations of the Potential Function Method in Patter Recognition Learning
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
25
, pp.
821
837
.
37.
Aronszajn
,
N.
, 1950, “
Theory of Reproducing Kernels
,”
Trans. Am. Math. Soc.
0002-9947,
68
(
3
), pp.
337
404
.
38.
Shawe-Taylor
,
J.
, and
Cristianini
,
N.
, 2004,
Kernel Methods for Pattern Analysis
,
Cambridge University Press
,
Cambridge, England
.
39.
Tax
,
D. M. J.
, and
Duin
,
R. P. W.
, 1999, “
Data Domain Description Using Support Vectors
,”
European Symposium on Artificial Neural Networks
, Bruges, Belgium, pp.
251
256
.
40.
Ben-Hur
,
A.
,
Horn
,
D.
,
Siefelmann
,
H. T.
, and
Vapnik
,
V.
, 2002, “
Support Vector Clustering
,”
J. Mach. Learn. Res.
1532-4435,
2
(
2
), pp.
125
137
.
41.
Lee
,
S. -H.
, and
Daniels
,
K.
, 2005, “
Gaussian Kernel Width Generator for Support Vector Clustering
,”
Advances in Bioinformatics and Its Applications
,
World Scientific
,
Fort Lauderdale, FL
.
42.
Jun
,
S. -H.
, and
Oh
,
K. -W.
, 2006, “
A Competitive Co-Evolving Support Vector Clustering
,”
Neural Information Processing
,
Springer
,
Berlin
.
43.
Xu
,
R.
, and
Wunsch
,
D.
, II
, 2005, “
Survey of Clustering Algorithms
,”
IEEE Trans. Neural Netw.
1045-9227,
16
(
3
), pp.
645
678
.
44.
Yang
,
J.
,
Estivill-Castro
,
V.
, and
Chalup
,
S. K.
, 2002, “
Support Vector Clustering Through Proximity Graph Modeling
,”
Ninth International Conference on Neural Information Processing
, pp.
898
903
.
45.
Lee
,
J.
, and
Lee
,
D.
, 2005, “
An Improved Cluster Labeling Method for Support Vector Machines
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
27
(
3
), pp.
461
464
.
46.
Lee
,
S. -H.
, and
Daniels
,
K.
, 2006, “
Cone Cluster Labeling for Support Vector Clustering
,”
Sixth SIAM International Conference on Data Mining
,
J.
Ghosh
,
D.
Lambert
,
D.
Skillcorn
, and
J.
Srivastava
, eds., Bethesda, MD, pp.
484
488
.
47.
Malak
,
R. J.
, 2008, “
Using Parameterized Efficient Sets to Model Alternatives for Systems Design Decisions
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
48.
Malak
,
R. J.
, and
Paredis
,
C. J. J.
, “
Using Parameterized Pareto Sets to Model Design Concepts
,”
ASME J. Mech. Des.
0161-8458, in press.
49.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Sondergaard
,
J.
, 2002, “
DACE: A Matlab Kriging Toolbox
,” Technical University of Denmark Technical Report No. IMM-TR-2002-12.
50.
Witten
,
I. H.
, and
Frank
,
E.
, 2005,
Data Mining: Practical Machine Learning Tools and Techniques
,
Academic
,
New York
.
51.
Keeney
,
R. L.
, and
Raiffa
,
H.
, 1993,
Decisions with Multiple Objectives
,
Cambridge University Press
,
Cambridge, England
.
52.
Belegundu
,
A. D.
, and
Chandrupatla
,
T. R.
, 1999,
Optimization Concepts and Applications in Engineering
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.