In this paper, the structural design of modular reconfigurable robots (MRRs) is studied. This problem is defined as the determination of proper module sizes according to the robot’s payload and end-effector deflection specifications. Because an MRR has multiple configurations, a simple design process is proposed in order to avoid performing the structural design stage at each configuration. The final structural design is only carried out at a single configuration that can guarantee the robot’s satisfactory performance for all remaining feasible configurations. It is shown that the module structural design stage can be performed at the local coordinate frame of each module. While the module local force requirement can be fully determined, the determination of the module local deformation requirement is redundant. Thus, there can exist multiple design solutions. To overcome this problem, a nonlinear approach using a genetic algorithm is used to search for an optimal solution. Finally, a design simulation is performed on an example MRR, and the results show the effectiveness of the proposed design method.

1.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
, 1995, “
Tetrobot: A Modular System for Hyper-Redundant Parallel Robotics
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
863
870
.
2.
Cohen
,
R.
,
Lipton
,
M. G.
,
Dai
,
M. Q.
, and
Benhabib
,
B.
, 1992, “
Conceptual Design of a Modular Robot
,”
ASME J. Mech. Des.
0161-8458,
114
(
1
), pp.
117
125
.
3.
Yang
,
G.
,
Chen
,
I. M.
, and
Kang
,
I. G.
, 2000, “
Task-Based Optimization of Modular Robot Configurations: Minimized Degree-of-Freedom Approach
,”
Mech. Mach. Theory
0094-114X,
35
(
4
), pp.
517
540
.
4.
Hafez
,
M.
,
Lichter
,
D.
, and
Dubowsky
,
S.
, 2002, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
335
340
.
5.
Li
,
B.
,
Ma
,
S.
,
Liu
,
J.
, and
Wang
,
Y.
, 2005, “
Development of a Shape Shifting Robot for Search and Rescue
,”
Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics
, pp.
31
35
.
6.
Yim
,
M.
,
Guff
,
D. G.
, and
Roufas
,
K. D.
, 2000, “
Polybot: A Modular Reconfigurable Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
514
520
.
7.
Shen
,
W.
,
Will
,
P.
, and
Koshnevis
,
B.
, 2003, “
Self-Assembly in Space Via Self-Reconfigurable Robots
,”
Proceedings of the 2003 IEEE ICRA
, Vol.
2
, pp.
2516
2521
.
8.
Suh
,
J. W.
,
Homans
,
S. B.
, and
Yim
,
M.
, 2002, “
Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
4095
4101
.
9.
Roy
,
J.
,
Goldberg
,
R. P.
, and
Whitcomb
,
L. L.
, 2004, “
Structural Design, Analysis and Performance Evaluation of a New Semi-Direct Drive Robot Arm: Theory and Experiment
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
9
(
1
), pp.
10
19
.
10.
Mroz
,
G.
, and
Notash
,
L.
, 2004, “
Design and Prototype of Parallel, Wire-Actuated Robots With a Constraining Linkage
,”
J. Rob. Syst.
0741-2223,
21
(
12
), pp.
677
687
.
11.
Xi
,
F.
,
Zhang
,
D.
,
Mechefske
,
C. M.
, and
Lang
,
S. Y. T.
, 2004, “
Global Kinetostatic Modeling of Tripod-Based Parallel Kinematic Machine
,”
Mech. Mach. Theory
0094-114X,
39
(
4
), pp.
357
377
.
12.
Callegari
,
M.
,
Gabrielli
,
A.
, and
Ruggiu
,
M.
, 2008, “
Kineto-Elasto-Static Synthesis of a 3-CRU Spherical Wrist for Miniaturized Assembly Tasks
,”
Meccanica
0025-6455,
43
, pp.
377
389
.
13.
Oral
,
S.
, and
Kemal Ider
,
S.
, 1997, “
Optimum Design of High-Speed Flexible Robotic Arms With Dynamic Behavior Constraints
,”
Comput. Struct.
0045-7949,
65
(
2
), pp.
255
259
.
14.
Shijun
,
W.
, and
Jinjuan
,
Z.
, 2002, “
FEM Optimization for Robotic Structure
,”
Proceedings of the 2002 IEEE International Conference on Industrial Technology
, pp.
510
513
.
15.
Chen
,
I. M.
, and
Burdick
,
J. W.
, 1993, “
Assembly Configurations of Modular Robotic Systems
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems
, pp.
1985
1992
.
16.
Xi
,
F.
, and
Sun
,
J.
, 2008, “
A Motion Simulation Method for Reconfigurable Machines
,”
International Journal of Manufacturing Research
,
3
(
2
), pp.
216
235
.
17.
Khan
,
W.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and Direct Problems
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
168
178
.
18.
Liu
,
H.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D. G.
,
Li
,
M.
, and
Hu
,
S. J.
, 2007, “
Kinematic Design of a 5-DOF Hybrid Robot With Large Workspace/Limb-Stroke Ratio
,”
ASME J. Mech. Des.
0161-8458,
129
(
5
), pp.
530
537
.
19.
Przemieniecki
,
J. S.
, 1985,
Theory of Matrix Structural Analysis
,
Dover
,
New York
.
20.
Wasfy
,
T. M.
, and
Noor
,
A. K.
, 2003, “
Computational Strategies for Flexible Multi-Body Systems
,”
Appl. Mech. Rev.
0003-6900,
56
(
6
), pp.
553
613
.
21.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
, 2006, “
Dynamic Analysis of Flexible Manipulators, A Literature Review
,”
Mech. Mach. Theory
0094-114X,
41
(
7
), pp.
749
777
.
22.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
23.
Salisbury
,
J. K.
, and
Craig
,
J. J.
, 1982, “
Articulated Hands, Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
0278-3649,
1
(
1
), pp.
4
17
.
24.
Mitchell
,
M.
, 1998,
An Introduction to Genetic Algorithms
,
MIT
,
Boston
.
You do not currently have access to this content.