Sensitivity analysis has received significant attention in engineering design. While sensitivity analysis methods can be global, taking into account all variations, or local, taking into account small variations, they generally identify which uncertain parameters are most important and to what extent their effect might be on design performance. The extant methods do not, in general, tackle the question of which ranges of parameter uncertainty are most important or how to best allocate Investments to partial uncertainty reduction in parameters under a limited budget. More specifically, no previous approach has been reported that can handle single-disciplinary multi-output global sensitivity analysis for both a single design and multiple designs under interval uncertainty. Two new global uncertainty metrics, i.e., radius of output sensitivity region and multi-output entropy performance, are presented. With these metrics, a multi-objective optimization model is developed and solved to obtain fractional levels of parameter uncertainty reduction that provide the greatest payoff in system performance for the least amount of “Investment.” Two case studies of varying difficulty are presented to demonstrate the applicability of the proposed approach.

1.
Iman
,
R. L.
, and
Helton
,
J. C.
, 1988, “
An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models
,”
Risk Anal.
0272-4332,
8
(
1
), pp.
71
90
.
2.
Hamby
,
D. M.
, 1994, “
Review of Techniques for Parameter Sensitivity Analysis of Environmental Models
,”
Environ. Monit. Assess.
0167-6369,
32
(
2
), pp.
135
154
.
3.
Kern
,
D.
,
Du
,
X.
, and
Sudjianto
,
A.
, 2003, “
Forecasting Manufacturing Quality During Design Using Process Capability Data
,”
Proceedings of the IMECE’ 03, ASME 2003 International Mechanical Engineering Congress and RD&D Expo
, Washington, DC, Nov. 15–21.
4.
Frey
,
H. C.
, and
Patil
,
S. R.
, 2002, “
Identification and Review of Sensitivity Analysis Methods
,”
Risk Anal.
0272-4332,
22
(
3
), pp.
553
578
.
5.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
, 2008,
Global Sensitivity Analysis: The Primer
,
Wiley
,
New York
.
6.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2006, “
Relative Entropy Based Method for Global and Regional Sensitivity Analysis in Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
1
11
.
7.
Helton
,
J. C.
, 1993, “
Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal
,”
Reliab. Eng. Syst. Saf.
0951-8320,
42
(
2-3
), pp.
327
367
.
8.
Helton
,
J. C.
, and
Davis
,
F. J.
, 2003, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
81
(
1
), pp.
23
69
.
9.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.
, 1999, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
0040-1706,
41
(
1
), pp.
39
56
.
10.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
875
886
.
11.
Yin
,
X.
, and
Chen
,
W.
, 2008, “
A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), pp.
071402
.
12.
Sobol
,
I. M.
, 1993, “
Sensitivity Analysis for Non-Linear Mathematical Models
,”
Mathematical Modeling and Computational Experiment
,
1
, pp.
407
414
.
13.
Sobol
,
I. M.
, 1990, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Matematicheskoe Modelirovanie
,
2
, pp.
112
118
.
14.
Homma
,
T.
, and
Saltelli
,
A.
, 1996, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
0951-8320,
52
(
1
), pp.
1
17
.
15.
Sobol
,
I. M.
, 2001, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
0378-4754,
55
(
1-3
), pp.
271
280
.
16.
Oakley
,
J. E.
, and
O'Hagan
,
A.
, 2004, “
Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach
,”
J. R. Stat. Soc. Ser. B (Stat. Methodol.)
,
66
(
3
), pp.
751
769
. 1369-7412
17.
Greenland
,
S.
, 2001, “
Sensitivity Analysis, Monte Carlo Risk Analysis, and Bayesian Uncertainty Assessment
,”
Risk Anal.
,
21
(
4
), pp.
579
584
. 0272-4332
18.
Wu
,
Y. -T.
, 1987, “
Demonstration of a New, Fast Probability Integration Method for Reliability Analysis
,”
Journal of Engineering for Industry, Serial B
,
109
(
1
), pp.
8
24
.
19.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.
, 1999, “
A Role for Sensitivity Analysis in Presenting the Results From MCDA Studies to DMs
,”
J. Multi-Criter. Decis. Anal.
1057-9214,
8
(
3
), pp.
139
145
.
20.
Balbas
,
A.
,
Ballvé
,
M.
, and
Guerra
,
P. J.
, 1999, “
Sensitivity in Multi-Objective Programming Under Homogeneity Assumptions
,”
J. Multi-Criter. Decis. Anal.
1057-9214,
8
(
3
), pp.
133
138
.
21.
Wu
,
W. D.
, and
Rao
,
S. S.
, 2007, “
Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
92
(
1
), pp.
54
64
.
22.
Ferson
,
S.
, and
Ginzburg
,
L. R.
, 1996, “
Different Methods Are Needed to Propagate Ignorance and Variability
,”
Reliab. Eng. Syst. Saf.
0951-8320,
54
(
2-3
), pp.
133
144
.
23.
Ferson
,
S.
,
Nelsen
,
R. B.
,
Hajagos
,
J.
,
Berleant
,
D. J.
,
Zhang
,
J.
,
Tucker
,
W. T.
,
Ginzburg
,
L. R.
, and
Oberkampf
,
W. L.
, 2004, “
Dependence in Probabilistic Modeling, Dempster-Shafer Theory, and Probability Bounds Analysis
,” Sandia National Laboratories, Report No. SAND2004-3072.
24.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
, 2000,
Sensitivity Analysis
,
Wiley
,
New York
.
25.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
, 2004,
Sensitivity Analysis in Practice
,
Wiley
,
New York
.
26.
Barron
,
H.
, and
Schmidt
,
C. P.
, 1988, “
Sensitivity Analysis of Additive Multiattribute Value Models
,”
Oper. Res.
,
36
(
1
), pp.
122
127
. 0030-364X
27.
Avila
,
S. L.
,
Lisboa
,
A. C.
,
Krahenbuhl
,
L.
,
Carpes
,
W. P.
,
Vasconcelos
,
J. A.
,
Saldanha
,
R. R.
, and
Takahashi
,
R. H. C.
, 2006, “
Sensitivity Analysis Applied to Decision Making in Multiobjective Evolutionary Optimization
,”
IEEE Trans. Magn.
,
42
(
4
), pp.
1103
1106
. 0018-9464
28.
Deb
,
K.
, 2001,
Multiobjective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
29.
Zhang
,
W. H.
, 2003, “
On the Pareto Optimum Sensitivity Analysis in Multicriteria Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
(
6
), pp.
955
977
.
30.
Balbas
,
A.
,
Galperin
,
E.
, and
Guerra
,
P. J.
, 2005, “
Sensitivity of Pareto Solutions in Multiobjective Optimization
,”
J. Optim. Theory Appl.
,
126
(
2
), pp.
247
264
. 0022-3239
31.
Fiacco
,
A. V.
, 1983,
Introduction to Sensitivity and Stability Analysis in Nonlinear Programming
,
Academic
,
New York
.
32.
Bauer
,
K. W.
,
Parnell
,
G. S.
, and
Meyers
,
D. A.
, 1999, “
Response Surface Methodology as A Sensitivity Analysis Tool in Decision Analysis
,”
J. Multi-Criter. Decis. Anal.
1057-9214,
8
(
3
), pp.
162
180
.
33.
Cover
,
T. M.
, and
Thomas
,
J. A.
, 1991,
Elements of Information Theory
,
Wiley
,
New York
.
34.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2006, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
874
883
.
35.
Miettinen
,
K. M.
, 1999,
Nonlinear Multiobjective Optimization
,
Kluwer Academic
,
Boston, MA
.
36.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Information and Control
,
8
, pp.
338
353
.
37.
Vincent
,
L.
, 1993, “
Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms
,”
IEEE Trans. Image Process.
1057-7149,
2
(
2
), pp.
176
201
.
38.
Shannon
,
C. E.
, 1948, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
0005-8580,
27
, pp.
379
423
.
39.
Shannon
,
C. E.
, 1948, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
0005-8580,
27
, pp.
623
656
.
40.
Gunawan
,
S.
,
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2004, “
On Maximizing Solution Diversity in Multiobjective Multidisciplinary Genetic Algorithm for Design Optimization
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
4
), pp.
491
514
.
41.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2003, “
An Information-Theoretic Performance Metric for Quality Assessment of Multi-Objective Optimization Solution Sets
,”
ASME J. Mech. Des.
0161-8458,
125
(
4
), pp.
655
663
.
42.
Shewry
,
M. C.
, and
Wynn
,
H. P.
, 1987, “
Maximum Entropy Sampling
,”
J. Appl. Stat.
,
14
, pp.
165
170
. 0266-4763
43.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
, 2005, “
Bayesian Meta-Modeling of Engineering Design Simulations: A Sequential Approach With Adaptation to Irregularities in the Response Behavior
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
2104
2126
.
44.
Narayanan
,
S.
, and
Azarm
,
S.
, 1999, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
18
, pp.
146
155
.
45.
Li
,
M.
, 2007, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications
,” Ph.D. thesis, University of Maryland, College Park, MD.
46.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P. K.
, 2008, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
0161-8458,
130
(
6
), p.
061402
.
47.
Acar
,
E.
,
Haftka
,
R. T.
, and
Johnson
,
T. F.
, 2007, “
Tradeoff of Uncertainty Reduction Mechanisms for Reducing Weight of Composite Laminates
,”
ASME J. Mech. Des.
0161-8458,
129
(
3
), pp.
266
274
.
48.
Kale
,
A. A.
, and
Haftka
,
R. T.
, 2008, “
Tradeoff of Weight and Inspection Cost in Reliability-Based Structural Optimization
,”
J. Aircr.
,
45
(
1
), pp.
77
85
. 0021-8669
49.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening, Predicting and Computer Experiments
,”
Technometrics
0040-1706,
34
(
1
), pp.
15
25
.
50.
Stump
,
G.
,
Yukish
,
M.
,
Martin
,
J.
, and
Simpson
,
T.
, 2004, “
The ARL Trade Space Visualizer—An Engineering Decision-Making Tool
,”
Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY, Aug. 30–Sept. 1.
You do not currently have access to this content.