This paper illustrates the power and versatility of the convex programming framework for optimal spline synthesis that was developed in a companion paper (Demeulenaere, Pipeleers, De Caigny, Swevers, De Schutter, and Vandenberghe, 2009, “Optimal Spines for Rigid Motion Systems: A Convex Programming Framework”, ASME J. Mech. Des., 131, p. 101005.). Two case studies concerning rigid motion systems illustrate the ability of the framework to improve upon recent (2005) literature results: (i) a numerical optimization study concerning kinematic optimization of uniform quintic splines for cam systems and (ii) an analytical study concerning time optimal quartic splines for motion systems driven by servomotors and subject to kinematic constraints. In a third study, the versatility of the framework is illustrated by generating time optimal and time-energy optimal motions for a rigid servomotor driven system under torque constraints. Based on these three case studies, the convex programming framework of the companion paper is extended with the following generic aspects: (i) a bisection to generate time optimal motions, (ii) a direct expression of the upper and lower bounds on motor torque, and (iii) a convex quadratic energy objective function for servomotor driven systems.

1.
Dierckx
,
P.
, 1993,
Curve and Surface Fitting With Splines
,
Oxford University Press
,
New York
.
2.
Demeulenaere
,
B.
,
Pipeleers
,
G.
,
De Caigny
,
J.
,
Swevers
,
J.
,
De Schutter
,
J.
, and
Vandenberghe
,
L.
, 2009, “
Optimal Splines for Rigid Motion Systems: A Convex Programming Framework
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
101004
.
3.
Kwakernaak
,
H.
, and
Smit
,
J.
, 1968, “
Minimum Vibration Cam Profiles
,”
J. Mech. Eng. Sci.
0022-2542,
10
, pp.
219
227
.
4.
Qiu
,
H.
,
Lin
,
C. -J.
,
Li
,
Z. -Y.
,
Ozaki
,
H.
,
Wang
,
J.
, and
Yue
,
Y.
, 2005, “
A Universal Optimal Approach to Cam Curve Design and Its Applications
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
669
692
.
5.
Yoon
,
K.
, and
Rao
,
S.
, 1993, “
Cam Motion Synthesis Using Cubic Splines
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
441
446
.
6.
Wang
,
L.
, and
Yang
,
Y.
, 1996, “
Computer Aided Design of Cam Motion Programs
,”
Comput Ind.
0166-3615,
28
, pp.
151
161
.
7.
Mermelstein
,
S.
, and
Acar
,
M.
, 2004, “
Optimising Cam Motion Using Piecewise Polynomials
,”
Eng. Comput.
0263-4759,
19
, pp.
241
254
.
8.
Nguyen
,
V.
, and
Kim
,
D.
, 2007, “
Flexible Cam Profile Synthesis Method Using Smoothing Spline Curves
,”
Mech. Mach. Theory
0094-114X,
42
, pp.
825
838
.
9.
Lambrechts
,
P.
,
Boerlage
,
M.
, and
Steinbuch
,
M.
, 2005, “
Trajectory Planning and Feedforward Design for Electromechanical Motion Systems
,”
Control Eng. Pract.
0967-0661,
13
, pp.
145
157
.
10.
Norton
,
R.
, 2002,
Cam Design and Manufacturing Handbook
,
Industrial
,
New York
.
11.
Box
,
M.
, 1965, “
A New Method of Constrained Optimization and a Comparison With Other Methods
,”
Comput. J.
0010-4620,
8
, pp.
42
52
.
12.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge, England
.
13.
Demeulenaere
,
B.
,
De Caigny
,
J.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2007, “
Dynamically Compensated and Robust Motion System Inputs Based on Splines: A Linear Programming Approach
,”
American Control Conference
, pp.
5011
5018
.
You do not currently have access to this content.