This paper demonstrates a novel quadstable monolithic mechanism (QsMM), which provides four stable equilibrium positions within its planar operation range. The QsMM has been realized from the use of both X- and Y-directional bistable structures, which utilize curved snapping beams. Two pairs of curved beams were attached to an inner frame in both X and Y directions to present an independent bistable behavior in the directions. It was found out that the design of the inner frame is crucial for the quadstability and dynamic responses of the mechanism. A millimeter-scale brass mechanism was actually fabricated by ultraprecision milling to test the quadstability and the force-displacement behavior. The prototype clearly demonstrates four distinct stable positions in its millimeter-scale operation range. The design concept, finite element simulation, fabrication, and experimental measurement of the proposed multistable mechanism have been presented. The mechanical multistability of the proposed QsMM can be utilized for multiple switching and optical networking applications, yielding low power consumption operations.

1.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
1057-7157,
13
, pp.
137
146
.
2.
Qiu
,
J.
,
Lang
,
J. H.
,
Slocum
,
A. H.
, and
Struempler
,
R.
, 2003, “
A High-Current Electrothermal Bistable MEMS Relay
,”
Proceedings of the IEEE MEMS 2003 Conference
,
Kyoto
, Jan., pp.
64
67
.
3.
Vangbo
,
M.
, 1998, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators, A
0924-4247,
69
, pp.
212
216
.
4.
Vangbo
,
M.
, and
Bäcklund
,
Y.
, 1998, “
A Lateral Symmetrically Bistable Buckled Beam
,”
J. Micromech. Microeng.
0960-1317,
8
, pp.
29
32
.
5.
Lee
,
J. H.
,
Lee
,
M. L.
,
Jang
,
W. I.
,
Choi
,
C. A.
, and
Joo
,
J. W.
, 1999, “
Bistable Planar Polysilicon Microactuators With Shallow Arch-Shaped Leaf Springs
,”
Proc. SPIE
0277-786X,
3876
, pp.
274
279
.
6.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
, 1999, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
416
423
.
7.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
, 2002, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
257
264
.
8.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2003, “
A Self-Retracting Fully-Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
273
280
.
9.
Hwang
,
I. H.
,
Shim
,
Y. S.
, and
Lee
,
J. H.
, 2003, “
Modeling and Experimental Characterization of the Chevron-Type Bistable Microactuator
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
948
954
.
10.
Casals-Terre
,
J.
, and
Shkel
,
A. M.
, 2004, “
Dynamic Analysis of a Snap-Action Micromechanism
,”
IEEE Sensors
,
Vienna
, Oct., pp.
1245
1248
.
11.
Goll
,
C.
,
Bacher
,
W.
,
Büstgens
,
B.
,
Maas
,
D.
,
Menz
,
W.
, and
Schomburg
,
W. K.
, 1996, “
Microvalves With Bistable Buckled Polymer Diaphragms
,”
J. Micromech. Microeng.
0960-1317,
6
, pp.
77
79
.
12.
Hälg
,
B.
, 1990, “
On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics
,”
Proceedings of the IEEE Micro Electro Mechanical Systems Workshop
,
Napa Valley
, Feb., pp.
172
176
.
13.
Hoffman
,
M.
,
Kopka
,
P.
, and
Voges
,
E.
, 1999, “
Bistable Micromechanical Fiber-Optic Switches on Silicon With Thermal Actuators
,”
Sens. Actuators, A
0924-4247,
78
, pp.
28
35
.
14.
Foulds
,
I. G.
,
Trinh
,
M. T.
,
Hu
,
S.
,
Liao
,
S. W.
,
Johnstone
,
R. W.
, and
Parameswaran
,
M. A.
, 2003, “
New Design for Surface Micromachined Bistable and Multistable Switches
,”
J. Microlithogr., Microfabr., Microsyst.
1537-1646,
2
, pp.
255
258
.
15.
Brenner
,
M. P.
,
Lang
,
J. H.
,
Li
,
J.
,
Qiu
,
J.
, and
Slocum
,
A. H.
, 2003, “
Optimal Design of a Bistable Switch
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
9663
9667
.
16.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
, 2003, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
, pp.
18
25
.
17.
King
,
C.
,
Beaman
,
J. J.
,
Sreenivasan
,
S. V.
, and
Campbell
,
M.
, 2005, “
Multistable Equilibrium System Design Methodology and Demonstration
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
1036
1046
.
18.
Han
,
J. S.
,
Ko
,
J. S.
,
Kim
,
Y. T.
, and
Kwak
,
B. M.
, 2002, “
Parametric Study and Optimization of a Micro-Optical Switch With a Laterally Driven Electromagnetic Microactuator
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
939
947
.
19.
Han
,
J. S.
,
Ko
,
J. S.
, and
Korvink
,
J. G.
, 2004, “
Structural Optimization of a Large-Displacement Electromagnetic Lorentz Force Microactuator for Optical Switching Applications
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1585
1596
.
20.
ANSYS, 2005,
ANSYS Theory Reference 10.0
,
ANSYS Inc.
,
Canonsburg
.
21.
Menz
,
W.
,
Förster
,
R.
,
Schoth
,
A.
, and
Müller
,
C.
, 2002, “
Non-Conventional Machining for Microsystems
,”
Proceedings of the Third Euspen International Conference
,
Eindhoven
, May, pp.
3
7
.
You do not currently have access to this content.