A wide curve is a curve with width or cross section. This paper introduces a shape and size synthesis method for compliant mechanisms based on free-form wide curve theory. With the proposed method, detailed dimensions synthesis can be performed to further improve the performance after the topology is selected. Every connection in the topology is represented by a parametric wide curve in which variable shape and size are fully described and conveniently controlled by the limited number of parameters. The shape and size synthesis is formulated as the optimization of the control parameters of wide curves corresponding to all connections in the topology. Problem-dependent objectives are optimized and practical constraints are imposed during the optimization process. The optimization problem is solved by the constrained nonlinear programing algorithm in the MATLAB Optimization Toolbox. Two examples are included to demonstrate the effectiveness of the proposed synthesis procedure.

1.
Midha
,
A.
,
Norton
,
T. W.
, and
Howell
,
L. L.
, 1994, “
On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
116
(
1
), pp.
270
279
.
2.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
(
11
), pp.
93
96
.
3.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
4.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S. B.
, and
Wise
,
K. D.
, 1994, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
1050-0472,
116
(
4
), pp.
1081
1088
.
5.
Ananthasuresh
,
G. K.
, 2003,
Optimal Synthesis Methods for MEMS
,
Kluwer
,
Dordrecht
.
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2002,
Topology Optimization
,
Springer-Verlag
,
Berlin
.
7.
Howell
,
L. L.
, and
Midha
,
A.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
J. Mech. Des.
1050-0472,
116
(
1
), pp.
280
290
.
8.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
117
(
1
), pp.
156
165
.
9.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
118
(
1
), pp.
121
125
.
10.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1996, “
The Topological Synthesis of Compliant Mechanisms
,”
Mech. Mach. Theory
0094-114X,
31
(
2
), pp.
185
199
.
11.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2003, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
J. Mech. Des.
1050-0472,
125
(
4
), pp.
701
708
.
12.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
J. Mech. Des.
1050-0472,
126
(
4
), pp.
657
666
.
13.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2005, “
A Three Degree-of-Freedom Model for Self-Retracting Fully Compliant Bistable Micromechanisms
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
739
744
.
14.
Yu
,
Yue-Qing
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M.-G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
760
765
.
15.
Guérinot
,
A. E.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Todd
,
R. H.
, 2005, “
Compliant Joint Design Principles for High Compressive Load Situations
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
774
781
.
16.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2005, “
Circular-Hinge Line Element for Finite Element Analysis of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
766
773
.
17.
Zettl
,
B.
,
Szyszkowski
,
W.
, and
Zhang
,
W. J.
, 2005, “
On Systematic Errors of Two-Dimensional Finite Element Modeling of Right Circular Planar Flexure Hinges
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
782
787
.
18.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
788
798
.
19.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
318
.
20.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
ASME Dynamic Systems and Control
, ASME New York, DSC-Vol.
55-2
, pp.
677
686
.
21.
Larsen
,
V. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
22.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
493
524
.
23.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26-27
), pp.
3443
3458
.
24.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
J. Mech. Des.
1050-0472,
119
(
2
), pp.
238
245
.
25.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
0890-5452,
28
(
4
), pp.
245
280
.
26.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
J. Mech. Des.
1050-0472,
123
(
1
), pp.
33
43
.
27.
Parsons
,
R.
, and
Canfield
,
S. L.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
1
), pp.
78
86
.
28.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
J. Mech. Des.
1050-0472,
126
(
6
), pp.
975
983
.
29.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
J. Mech. Des.
1050-0472,
126
(
4
), pp.
667
672
.
30.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
J. Mech. Des.
1050-0472,
116
(
4
), pp.
1005
1012
.
31.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
, 1996, “
Genetic Algorithm-Based Structural Topology Design With Compliance and Topology Simplification Considerations
,”
J. Mech. Des.
1050-0472,
118
(
1
), pp.
89
98
.
32.
Jakiela
,
M. J.
,
Chapman
,
C. D.
,
Duda
,
J. W.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
(
2
), pp.
339
356
.
33.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
745
752
.
34.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
J. Mech. Des.
1050-0472,
122
(
4
), pp.
560
566
.
35.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
492
500
.
36.
Zhou
,
H.
, and
Ting
,
K. L.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
753
759
.
37.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
121
(
2
), pp.
229
234
.
38.
Xu
,
D.
,
Ananthasuresh
, and
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
125
(
2
), pp.
253
2261
.
39.
Salomon
,
D.
, 1999,
Computer Graphics and Geometric Modeling
,
Springer-Verlag
,
Berlin
.
40.
Farin
,
G.
, 2001,
Curves and Surfaces for CAGD: A Practical Guide
,
Academic Press
,
New York
.
41.
Mestetskii
,
L. M.
, 2000, “
Fat Curves and Representation of Planar Figures
,”
Comput. Graph.
0097-8930,
24
(
1
), pp.
9
21
.
42.
MathWorks, Inc., 2001,
Optimization Toolbox User’s Guide
, Use with MATLAB: Computation, Visualization, Programming, MathWorks, Inc.
43.
Yamaguchi
,
F.
, 1988,
Curves and Surfaces in Computer Aided Geometric Design
,
Springer
,
New York
.
44.
Crisfield
,
M. A.
, 1991,
Non-Linear Finite Element Analysis of Solids and Structures
,
Wiley
,
New York
.
You do not currently have access to this content.