In this paper an algebraic formulation is presented for the boundary workspace of 3-R manipulators in Cartesian Space. It is shown that the cross-section boundary curve can be described by a 16th order polynomial as function of radial and axial reaches. The cross-section boundary curve and workspace boundary surface are fully cyclic. Geometric singularities of the curve are identified and characterized. Numerical examples are presented to show the usefulness of the proposed investigation and to classify the design characteristics.

1.
Hayes
,
M. J. D.
,
Husty
,
M. L.
, and
Zsombor-Murray
,
P. J.
, 2002, “
Singular Configurations of Wrist-Partitioned 6R Serial Robots: A Geometric Perspective for Users
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
26
(
1
),
41
55
.
2.
Gupta
,
K. C.
, 1986, “
On the Nature of Robot Workspace
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
112
121
.
3.
Roth
,
B.
, 1975, “
Performance Evaluation of Manipulators From a Kinematic Viewpoint
,”
National Bureau of Standards Special Publication
, No. 459, pp.
39
61
.
4.
Kumar
,
A.
, and
Waldron
,
K. J.
, 1981, “
The Workspace of a Mechanical Manipulator
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
665
672
.
5.
Gupta
,
K. C.
, and
Roth
,
B.
, 1982, “
Design Considerations for Manipulator Workspace
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
704
711
.
6.
Tsai
,
Y. C.
, and
Soni
,
A. H.
, 1983, “
An Algorithm for the Workspace of a General n-R Robot
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
70
78
.
7.
Ceccarelli
,
M.
, 1989, “
On the Workspace of 3R Robot Arms
,”
Proceedings of the Fifth IFToMM International Symposium on Theory and Practice of Mechanism
,
Bucharest
, Vol.
II-1
, pp.
37
46
.
8.
Ceccarelli
,
M.
, 1996, “
A Formulation for the Workspace Boundary of General N-Revolute Manipulators
,”
Mech. Mach. Theory
0094-114X,
31
(
5
), pp.
637
646
.
9.
Ceccarelli
,
M.
, and
Vinciguerra
,
A.
, 1995, “
On the Workspace of General 4R Manipulators
,”
Int. J. Robot. Res.
0278-3649,
14
(
2
), pp.
152
160
.
10.
Lanni
,
C.
,
Saramago
,
S.
, and
Ceccarelli
,
M.
, 2002, “
Optimum Design of General 3R Manipulators by Using Traditional and Random Search Optimization Techniques
,”
J. Braz. Soc. Mech. Sci.
0100-7386,
24
(
4
), pp.
293
301
.
11.
Ceccarelli
,
M.
, and
Lanni
,
C.
, 2004, “
A Multi-Objective Optimum Design of General 3R Manipulators for Prescribed Workspace Limits
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
119
132
.
12.
Haug
,
E. J.
,
Adkins
,
R.
, and
Luh
,
C. M.
, 1994, “
Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces
,”
Proc. 23rd ASME Mechanisms Conference
,
Minneapolis
.
13.
Freudenstein
,
F.
, and
Primrose
,
E. J. F.
, 1984, “
On the Analysis and Synthesis of the Workspace of a Three-Link, Turning-Pair Connected Robot Arm
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
, pp.
365
370
.
14.
Spanos
,
J.
, and
Kohli
,
D.
, 1985, “
Workspace Analysis of Regional Structures of Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
216
222
.
15.
Angeles
,
J.
, 1988, “
Special Loci of the Workspace Spherical Wrists
,”
Proceedings of the First International Workshop on Advances in Robotics Kinematics
,
Ljubljana
, pp.
36
45
.
16.
Hsu
,
M. S.
, and
Kohli
,
D.
, 1987, “
Boundary Surfaces and Accessibility Regions for Regional Structures of Manipulators
,”
Mech. Mach. Theory
0094-114X,
22
(
3
), pp.
277
289
.
17.
Smith
,
D. R.
, and
Lipkin
,
H.
, 1993, “
Higher Order Singularities of Regional Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
194
199
.
18.
Ranjbaran
,
F.
,
Angeles
,
J.
, and
Patel
,
R. V.
, 1992, “
The Determination of the Cartesian Workspace of General Three-Axes Manipulators
,”
Proceedings of the Third International Workshop on Advances in Robotics Kinematics
,
Ferrara
, pp.
318
325
.
19.
Burdick
,
J. W.
, 1995, “
A Classification of 3R Regional Manipulator Singularities and Geometries
,”
Mech. Mach. Theory
0094-114X,
30
(
1
), pp.
71
89
.
20.
Parenti-Castelli
,
V.
, and
Innocenti
,
C.
, 1988, “
Position Analysis of Robot Manipulators: Regions and Sub-Regions
,”
Proceedings of the First International Conference on Advances in Robot Kinematics
,
Ljubljana
, pp.
150
158
.
21.
Wenger
,
P.
, 2000, “
Some Guidelines for the Kinematic Design of New Manipulators
,”
Mech. Mach. Theory
0094-114X,
35
(
3
), pp.
437
449
.
22.
Wenger
,
P.
, 1992, “
A New General Formalism for the Kinematic Analysis of all Nonredundant Manipulators
,”
Proc. IEEE International Conference on Robotics and Automation
,
Nice
, Vol.
1
, pp.
442
447
.
23.
Abdel-Malek
,
K.
, and
Yeh
,
H.-J.
, 1997, “
Analytical Boundary of the Workspace for General 3-DOF Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
16
(
2
), pp.
198
213
.
24.
Ottaviano
,
E.
,
Ceccarelli
, and
M.
, and
Lanni
,
C.
, 1999, “
A Characterization of Ring Void in Workspace of Three-Revolute Manipulators
,”
Proceedings of the Tenth World Congress on the Theory of Machines and Mechanisms
,
Oulu
, Vol.
3
, pp.
1039
1044
.
25.
Saramago
,
S.
,
Ottaviano
,
E.
, and
Ceccarelli
,
M.
, 2002, “
A Characterization of the Workspace Boundary of Three-Revolute Manipulators
,”
Proceedings of DETC’02 ASME
2002 Biennial Robotics Conference
,
Montreal
, 2002, paper DETC2002/MECH-34342.
26.
Ottaviano
,
E.
,
Husty
,
M.
, and
Ceccarelli
,
M.
, 2004, “
A Cartesian Representation for the Boundary Workspace of 3R Manipulators
,”
Advances in Robot Kinematics
,
Sestri
Levante
, ed.,
Kluwer Academic Publishers
, Dordrecht, pp.
247
254
.
27.
Wenger
,
P.
,
Chablat
,
D.
, and
Baili
,
M.
, 2005, “
A DH Parameter Based Condition for 3R Orthogonal Manipulators to Have Four Distinct Inverse Kinematic Solutions
,”
ASME J. Mech. Des.
1050-0472,
127
(
1
), pp.
150
155
.
28.
Hunt
,
K. H.
,
Kinematic geometry
,
Clarendon Press
, Oxford, 1978.
29.
Naas
,
J.
, and
Schmidt
,
H. L.
,
Mathematisches Wörterbuch
, Band II, Akademieverlag Berlin-Teubner Verlag Stuttgart, 1974.
30.
Gibson
,
C. G.
, 1998, “
Elementary Geometry of Algebraic Curves
,”
Cambridge University Press
.
31.
Husty
,
M.
,
Karger
,
A.
,
Sachs
,
H.
, and
Steinhilper
,
W.
,
Kinematik und Robotik
,
Springer Verlag
, Berlin, 1997.
32.
Bruce
,
J. W.
, and
Giblin
,
P. J.
, 1992,
Curves and Singularities: A Geometrical Introduction to Singularity Theory
, 2nd ed.,
Cambridge University Press
, New York.
You do not currently have access to this content.