In this study a procedure to obtain direct singular positions of a 3RPS parallel manipulator is presented. If the heights of three spherical joints, denoted by d1n,d2n, and d3n respectively, are used as coordinate axes, then the workspace of the moving platform may be represented as an inclined solid cylinder in this coordinate system. The location of a point on the solid circular cylinder determines a configuration of the manipulator’s moving platform. The procedure to locate direct singular positions consists of two steps, the orientation of the moving platform is assumed first, from which the horizontal position of the moving platform may be obtained. Then in the second step the heights that make determinant of the Jacobian matrix vanish may always be determined. Results show that unless the moving platform is normal to the base, in which case there exist only one or two singular configurations, otherwise there are always three singular configurations corresponding to a moving platform’s orientation.

1.
Stock
,
M.
, and
Miller
,
K.
,
2003
, “
Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot
,”
J. Mech. Des.
,
125
, pp.
292
301
.
2.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2003
, “
A Family of 3-DOF Translational Parallel Manipulators
,”
J. Mech. Des.
,
125
, pp.
302
307
.
3.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2003
, “
Design Optimization of a Cartesian Parallel Manipulator
,”
J. Mech. Des.
,
125
, pp.
43
51
.
4.
Kim
,
D.
, and
Chung
,
W. K.
,
2003
, “
Kinematic Condition Analysis of Three-DOF Pure Translational Parallel Manipulators
,”
J. Mech. Des.
,
125
, pp.
323
331
.
5.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
, pp.
281
290
.
6.
Tsai, L.-W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley, New York.
7.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, Oxford.
8.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
,
5
, pp.
157
182
.
9.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
, pp.
45
56
.
10.
Merlet, J. P., 2000, Parallel Robots, Kluwer Academic Dordrecht, pp. 178–179.
11.
Lee
,
K. M.
, and
Shah
,
D.
,
1988
, “
Kinematic Analysis of Three Degree of Freedom In-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
4
, pp.
354
360
.
12.
Lee
,
K. M.
, and
Shah
,
D.
,
1988
, “
Dynamic Analysis of Three Degree of Freedom In-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
4
, pp.
361
367
.
13.
Lee, K. M., and Johnson, R., 1989, “Static Characteristics of an In-Parallel Actuated Manipulator for Clamping and Bracing Applications,” 1989 IEEE International Conference on Robotics and Automation, pp. 1408–1413.
14.
Lee
,
K. M.
,
1991
, “
A Three-Degree-of-Freedom Micromotion In-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
7
, pp.
634
641
.
15.
Waldron
,
K. J.
,
Raghavan
,
M.
, and
Roth
,
B.
,
1989
, “
Kinematics of a Hybrid Series-Parallel Manipulation System
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
211
221
.
16.
Song
,
S. M.
, and
Zhang
,
M. D.
,
1995
, “
A Study of Reactional Force Compensation Based on Three-Degree-of-Freedom Parallel Platforms
,”
J. Rob. Syst.
,
12
, pp.
783
794
.
17.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2003
, “
Kinematic Synthesis of a Spatial 3-RPS Parallel Manipulator
,”
J. Mech. Des.
,
125
, pp.
92
97
.
18.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
J. Mech. Des.
,
124
, pp.
254
258
.
19.
Ma
,
O.
, and
Angeles
,
J.
,
1992
, “
Architecture Singularities of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
7
, pp.
23
29
.
20.
Kumar
,
V.
,
1992
, “
Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms
,”
J. Mech. Des.
,
114
, pp.
349
358
.
21.
Xu
,
Y.-X.
,
Kohli
,
D.
, and
Weng
,
T.-C.
,
1994
, “
Direct Differential Kinematics of Hybrid-Chain Manipulators Including Singularity and Stability Analyses
,”
J. Mech. Des.
,
116
, pp.
614
621
.
22.
Wolf
,
A.
, and
Shoham
,
M.
,
2003
, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
J. Mech. Des.
,
125
, pp.
564
572
.
23.
Tsai
,
L.-W.
, and
Joshi
,
S.
,
2000
, “
Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator
,”
J. Mech. Des.
,
122
, pp.
439
446
.
24.
Hildebrand, F. B., 1992, Methods of Applied Mathematics, Dover, New York, p. 30.
25.
Cheng, S., 2002, “Direct Singular Configurations of 3RPS Parallel Manipulators,” Master thesis, Department of Mechanical Engineering, Tamkang University (in Chinese).
26.
Lin, J., 1999, Mathematical Handbook of Formulas and Tables, McGraw-Hill, New York.
You do not currently have access to this content.