This work demonstrates the successful synthesis of path generating compliant mechanisms by the process of topology and shape design optimization. As geometric topology variation of continuum structures is difficult to treat and analysis of the displacement path or trajectory of such structures is computationally intensive, a highly effective and efficient optimal design procedure is needed. This paper describes the use of a recently developed morphological geometric representation scheme coupled with an evolutionary algorithm to synthesize the mechanism. The scheme uses arrangements of skeleton and “flesh” to define structural geometry, which facilitates transmission of topological/shape characteristics across generations in the evolutionary process and will not render any geometrically invalid designs. The evolutionary algorithm solves the problem as a discrete optimization problem, with a proficient constraint handling capability.

1.
Howell, L. L., and Midha, A., 1993, “Compliant Mechanisms,” Modern Kinematics: Developments in the Last Forty Years, Erdman, A. G., ed., John Wiley, New York, pp. 422–428.
2.
Her
,
I.
, and
Midha
,
A.
,
1987
, “
A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis
,”
ASME J. Mech., Transm., Autom. Des.
,
109
, pp.
348
355
.
3.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
, pp.
156
165
.
4.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.
5.
Yang
,
R. J.
, and
Chuang
,
C. H.
,
1994
, “
Optimal Topology Design Using Linear Programming
,”
Comput. Struct.
,
52
, pp.
265
275
.
6.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
, pp.
309
336
.
7.
Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,” Dynamic Systems and Control (Vol. 2 of 2) American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC. v 55-2 1994, Radcliffe, C.J., ed., ASME, New York, pp. 677–686.
8.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
, pp.
238
245
.
9.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
25
, pp.
493
524
.
10.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1997
, “
Design and Fabrication of Compliant Micromechanisms and Structures with Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
,
6
, pp.
99
106
.
11.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
, pp.
229
234
.
12.
Tai, K., Cui, G. Y., and Ray, T., 2000, “Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape,” 2000 ASME International Design Engineering Technical Conferences, Baltimore, Maryland, USA, 10-13 September 2000, paper no. DETC2000/DAC14518.
13.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
, pp.
121
125
.
14.
Saxena, A., 2000, “Topology Optimization of Geometrically Nonlinear Compliant Mechanisms for Flexibility, Stiffness and Strength,” PhD dissertation, University of Pennsylvania.
15.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
, pp.
33
42
.
16.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
, pp.
1005
1012
.
17.
Chapman
,
C. D.
, and
Jakiela
,
M. J.
,
1996
, “
Genetic Algorithm-Based Structural Topology Design with Compliance and Topology Simplification Considerations
,”
ASME J. Mech. Des.
,
118
, pp.
89
98
.
18.
Duda
,
J. W.
, and
Jakiela
,
M. J.
,
1997
, “
Generation and Classification of Structural Topologies with Genetic Algorithm Speciation
,”
ASME J. Mech. Des.
,
119
, pp.
127
131
.
19.
Jakiela
,
M. J.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
,
2000
, “
Continuum Structural Topology Design with Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
, pp.
339
356
.
20.
Tai, K., and Chee, T. H., 1998, “Genetic Algorithm With Structural Morphology Representation for Topology Design Optimization,” Mechanics in Design—Proceedings of the 2nd International Conference on Mechanics in Design, Gentle, C. R. and Hull, J. B., ed., Nottingham Trent University, Nottingham, pp. 827–836.
21.
Michalewicz, Z., 1994, Genetic Algorithms+Data Structures=Evolution Programs, 2nd Ed., Springer-Verlag, Berlin.
22.
Schoenauer, M., 1995, “Shape Representations for Evolutionary Optimization and Identification in Structural Mechanics,” Genetic Algorithms in Engineering and Computer Science, Winter, G., Periaux, J., Galan, M. and Cuesta, P., ed., John Wiley, Chichester, pp. 443–464.
23.
Tai
,
K.
, and
Chee
,
T. H.
,
2000
, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
,
122
, pp.
560
566
.
24.
Cui, G. Y., Tai, K., and Wang, B. P., 2000, “Optimum Design of Structures for Maximum Natural Frequency Using Simulated Annealing and Morphological Representation,” 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Atlanta, Georgia, USA, 3-6 April 2000, paper no. AIAA-2000-1393.
25.
Ray, T., Tai, K., and Seow, K. C., 2000, “An Evolutionary Algorithm for Constrained Optimization,” Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), Whitley, D., Goldberg, D. E., Cantu-Paz, E., Spector, L., Parmee, I. C. and Beyer, H. G., ed., Morgan Kaufmann, San Francisco, pp. 771–777.
26.
Ray
,
T.
,
Tai
,
K.
, and
Seow
,
K. C.
,
2001
, “
Multiobjective Design Optimization by an Evolutionary Algorithm
,”
Eng. Optimiz.
,
33
, pp.
399
424
.
27.
Mortenson, M. E., 1997, Geometric Modeling, 2nd Ed., John Wiley, New York.
You do not currently have access to this content.