Abstract

Niobium as refractory element holds ability to arrest the primary radiation damage in reactor's fissionable conditions and can withstand high-temperature applications. We have inclined the investigation of irradiated Nb Σ 5 symmetric-tilt angled grain boundary (STGB) models at two high-angled grain boundary misorientation: 53.13 deg (Σ 5(2–10)/(120)) and 36.87 deg (Σ 5(3–10)/(130)), respectively. A hybrid of Ziegler–Biersack–Littmark (ZBL) and embedded atom method (EAM) potentials were superimposed to simulate radiation damage. Statistical averaging of the displacement cascades was conducted to study the dynamic evolution of the point defects and interstitial clusters at varying magnitudes of primary knock-on atom (PKA) energies, irradiation temperatures, and PKA directions. The irradiated grain bounary (GB) models were compared with an irradiated bulk Nb specimen, and the results of the study indicate that the irradiated Nb system with greater misorientation angle, i.e., Nb Σ 5 (ɵ = 53.13 deg) survived with lower number Frenkel pair defects as well as the population small-sized interstitial clusters. The point defect cluster analysis indicated the highest population of interstitial clusters survived in Nb STGB models were irradiated along <1 3 5> PKA direction and 100 keV recoil energies respectively.

References

1.
Zinkle
,
S. J.
,
2012
, “Radiation-Induced Effects on Microstructure,”
Comprehensive Nuclear Materials
,
R. J. M.
Konings
, ed.,
Elsevier
,
Amsterdam
, Vol. 1, pp.
65
98
.
2.
Zinkle
,
S. J.
, and
Was
,
G. S.
,
2013
, “
Materials Challenges in Nuclear Energy
,”
Acta Mater.
,
61
(
3
), pp.
735
758
.
3.
Holton
,
J. M.
,
2009
, “
A Beginner's Guide to Radiation Damage
,”
J. Synchrotron Radiat.
,
16
(
2
), pp.
133
142
.
4.
Zarkadoula
,
E.
, and
Stoller
,
R. E.
,
2020
,
Primary Radiation Damage Formation in Solids
,
Elsevier
,
New York
.
5.
Chartier
,
A.
,
Onofri
,
C.
,
Van Brutzel
,
L.
,
Sabathier
,
C.
,
Dorosh
,
O.
, and
Jagielski
,
J.
,
2016
, “
Early Stages of Irradiation Induced Dislocations in Urania
,”
Appl. Phys. Lett.
,
109
(
18
), p.
181902
.
6.
Garner
,
F. A.
,
Toloczko
,
M. B.
, and
Sencer
,
B. H.
,
2000
, “
Comparison of Swelling and Irradiation Creep Behavior of fcc-Austenitic and bcc-Ferritic/Martensitic Alloys at High Neutron Exposure
,”
J. Nucl. Mater.
,
276
(
1–3
), pp.
123
142
.
7.
Khiara
,
N.
,
Onimus
,
F.
,
Dupuy
,
L.
,
Kassem
,
W.
,
Crocombette
,
J.-P.
,
Pardoen
,
T.
,
Raskin
,
J.-P.
, and
Bréchet
,
Y.
,
2020
, “
A Novel Displacement Cascade Driven Irradiation Creep Mechanism in α-Zirconium: A Molecular Dynamics Study
,”
J. Nucl. Mater.
,
541
, p.
152336
.
8.
Yu
,
K. Y.
,
Liu
,
Y.
,
Sun
,
C.
,
Wang
,
H.
,
Shao
,
L.
,
Fu
,
E. G.
, and
Zhang
,
X.
,
2012
, “
Radiation Damage in Helium Ion Irradiated Nanocrystalline Fe
,”
J. Nucl. Mater.
,
425
(
1–3
), pp.
140
146
.
9.
Li
,
J.-T.
,
Beyerlein
,
I. J.
, and
Han
,
W.-Z.
,
2022
, “
Helium Irradiation-Induced Ultrahigh Hardening in Niobium
,”
Acta Mater.
,
226
, p.
117656
.
10.
Monnet
,
G.
,
2018
, “
Multiscale Modeling of Irradiation Hardening: Application to Important Nuclear Materials
,”
J. Nucl. Mater.
,
508
, pp.
609
627
.
11.
Odette
,
G. R.
, and
Lucas
,
G. E.
,
2001
, “
Embrittlement of Nuclear Reactor Pressure Vessels
,”
JOM
,
53
(
7
), pp.
18
22
.
12.
Wechsler
,
M. S.
,
1979
, “
The Influence of Impurity-Defect Interactions on Radiation Hardening and Embrittlement
,”
ASME J. Eng. Mater. Technol.
,
101
(
2
), pp.
114
121
.
13.
Zinkle
,
S. J.
, and
Farrell
,
K.
,
1989
, “
Void Swelling and Defect Cluster Formation in Reactor-Irradiated Copper
,”
J. Nucl. Mater.
,
168
(
3
), pp.
262
267
.
14.
Shen
,
S.
,
Chen
,
F.
,
Tang
,
X.
,
Ge
,
G.
,
Gao
,
J.
, and
Sun
,
Z.
,
2020
, “
Irradiation Damage and Swelling of Carbon-Doped Fe38Mn40Ni11Al4Cr7 High-Entropy Alloys Under Heavy Ion Irradiation at Elevated Temperature
,”
J. Mater. Sci.
,
55
(
36
), pp.
17218
17231
.
15.
Pitts
,
S. A.
,
Jiang
,
W.
,
Pizzocri
,
D.
,
Barker
,
E. I.
, and
Zbib
,
H. M.
,
2022
, “
A Continuum Dislocation Dynamics Crystal Plasticity Approach to Irradiated Body-Centered Cubic α-Iron
,”
ASME J. Eng. Mater. Technol.
,
144
(
1
), p.
011018
.
16.
Dai
,
C.
,
Saidi
,
P.
,
Yao
,
Z.
, and
Daymond
,
M. R.
,
2017
, “
Atomistic Simulations of Ni Segregation to Irradiation Induced Dislocation Loops in Zr-Ni Alloys
,”
Acta Mater.
,
140
, pp.
56
66
.
17.
Ma
,
P.-W.
,
Mason
,
D. R.
, and
Dudarev
,
S. L.
,
2020
, “
Multiscale Analysis of Dislocation Loops and Voids in Tungsten
,”
Phys. Rev. Mater.
,
4
(
10
), p.
103609
.
18.
Shan
,
C.
,
Lang
,
L.
,
Yang
,
T.
,
Lin
,
Y.
,
Gao
,
F.
,
Deng
,
H.
, and
Hu
,
W.
,
2020
, “
Molecular Dynamics Simulations of Radiation Damage Generation and Dislocation Loop Evolution in Ni and Binary Ni-Based Alloys
,”
Comput. Mater. Sci.
,
177
, p.
109555
.
19.
Čížek
,
J.
,
Kalivodová
,
J.
,
Janeček
,
M.
,
Stráský
,
J.
,
Srba
,
O.
, and
Macková
,
A.
,
2021
, “
Advanced Structural Materials for Gas-Cooled Fast Reactors—A Review
,”
Metals
,
11
(
1
), p.
76
.
20.
Roberto
,
J. B.
, and
de la Rubia
,
T. D.
,
2007
, “
Basic Research Needs for Advanced Nuclear Energy Systems
,”
JOM
,
59
(
4
), pp.
16
19
.
21.
Carter
,
K.-J.
,
2017
, “
Radiation Damage Quantification in Elemental Copper Using Wigner Energy Storage
,” Doctoral dissertation, Massachusetts Institute of Technology.
22.
Urban
,
K.
, and
Seeger
,
A.
,
1974
, “
Radiation-Induced Diffusion of Point-Defects During low-Temperature Electron Irradiation
,”
Philos. Mag.
,
30
(
6
), pp.
1395
1418
.
23.
Itoh
,
N.
, and
Tanimura
,
K.
,
1986
, “
Radiation Effects in Ionic Solids
,”
Radiat. Eff.
,
98
(
1–4
), pp.
269
287
.
24.
Dunn
,
A. Y.
,
Capolungo
,
L.
,
Martinez
,
E.
, and
Cherkaoui
,
M.
,
2013
, “
Spatially Resolved Stochastic Cluster Dynamics for Radiation Damage Evolution in Nanostructured Metals
,”
J. Nucl. Mater.
,
443
(
1–3
), pp.
128
139
.
25.
Crocombette
,
J.-P.
,
2018
, “
Cell Molecular Dynamics for Cascade (CMDC): Molecular Dynamics Simulation of Cascades for Realistic Ion Energies
,”
Comput. Mater. Sci.
,
147
, pp.
168
175
.
26.
Leino
,
A. A.
,
Djurabekova
,
F.
, and
Nordlund
,
K.
,
2014
, “
Radiation Effects in Nanoclusters Embedded in Solids
,”
Eur. Phys. J. B
,
87
(
10
), p.
242
.
27.
Nordlund
,
K.
,
2019
, “
Historical Review of Computer Simulation of Radiation Effects in Materials
,”
J. Nucl. Mater.
,
520
, pp.
273
295
.
28.
Nordlund
,
K.
,
Zinkle
,
S. J.
,
Sand
,
A. E.
,
Granberg
,
F.
,
Averback
,
R. S.
,
Stoller
,
R. E.
,
Suzudo
,
T.
, et al
,
2018
, “
Primary Radiation Damage: A Review of Current Understanding and Models
,”
J. Nucl. Mater.
,
512
, pp.
450
479
.
29.
Zhang
,
X.
,
Fu
,
E. G.
,
Li
,
N.
,
Misra
,
A.
,
Wang
,
Y.-Q.
,
Shao
,
L.
, and
Wang
,
H.
,
2012
, “
Design of Radiation Tolerant Nanostructured Metallic Multilayers
,”
ASME J. Eng. Mater. Technol.
,
134
(
4
), p.
041010
.
30.
Beyerlein
,
I. J.
,
Caro
,
A.
,
Demkowicz
,
M. J.
,
Mara
,
N. A.
,
Misra
,
A.
, and
Uberuaga
,
B. P.
,
2013
, “
Radiation Damage Tolerant Nanomaterials
,”
Mater. Today
,
16
(
11
), pp.
443
449
.
31.
El-Atwani
,
O.
,
Hinks
,
J. A.
,
Greaves
,
G.
,
Allain
,
J. P.
, and
Maloy
,
S. A.
,
2017
, “
Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten
,”
Mater. Res. Lett.
,
5
(
5
), pp.
343
349
.
32.
Manna
,
M.
, and
Pal
,
S.
,
2022
, “
Improvement in Radiation Resistance of Nanocrystalline Cu Using Grain Boundary Engineering: An Atomistic Simulation Study
,”
J. Mater. Sci.
,
57
(
42
), pp.
19832
19845
.
33.
Zhang
,
X.
,
Hattar
,
K.
,
Chen
,
Y.
,
Shao
,
L.
,
Li
,
J.
,
Sun
,
C.
,
Yu
,
K.
, et al
,
2018
, “
Radiation Damage in Nanostructured Materials
,”
Prog. Mater. Sci.
,
96
, pp.
217
321
.
34.
Andrievski
,
R. A.
,
2011
, “
Behavior of Radiation Defects in Nanomaterials
,”
Rev. Adv. Mater. Sci.
,
1
(
29
), pp.
54
67
.
35.
Su
,
Z.
,
Jiang
,
H.
,
Li
,
H.
,
Zhang
,
Y.
,
Chen
,
J.
,
Zhao
,
J.
, and
Ma
,
Y.
,
2023
, “
Recent Progress on Interfaces in Nanomaterials for Nuclear Radiation Resistance
,”
ChemNanoMat
,
9
(
2
), p.
e202200477
.
36.
Ackland
,
G.
,
2010
, “
Controlling Radiation Damage
,”
Science
,
327
(
5973
), pp.
1587
1588
.
37.
Barr
,
C. M.
,
El-Atwani
,
O.
,
Kaoumi
,
D.
, and
Hattar
,
K.
,
2019
, “
Interplay Between Grain Boundaries and Radiation Damage
,”
JOM
,
71
(
4
), pp.
1233
1244
.
38.
Bai
,
X.-M.
,
Voter
,
A. F.
,
Hoagland
,
R. G.
,
Nastasi
,
M.
, and
Uberuaga
,
B. P.
,
2010
, “
Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission
,”
Science
,
327
(
5973
), pp.
1631
1634
.
39.
Bai
,
X.-M.
, and
Uberuaga
,
B. P.
,
2013
, “
The Influence of Grain Boundaries on Radiation-Induced Point Defect Production in Materials: A Review of Atomistic Studies
,”
JOM
,
65
(
3
), pp.
360
373
.
40.
Sabathier
,
C.
,
Martin
,
G.
,
Michel
,
A.
,
Carlot
,
G.
,
Maillard
,
S.
,
Bachelet
,
C.
,
Fortuna
,
F.
,
Kaitasov
,
O.
,
Oliviero
,
E.
, and
Garcia
,
P.
,
2014
, “
In-Situ TEM Observation of Nano-Void Formation in UO2 Under Irradiation
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
326
, pp.
247
250
.
41.
Chen
,
Y.
,
Zhang
,
X.
, and
Wang
,
J.
,
2016
, “
Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu
,”
JOM
,
68
(
1
), pp.
235
241
.
42.
Li
,
J.
,
Wang
,
H.
, and
Zhang
,
X.
,
2018
, “
A Review on the Radiation Response of Nanoporous Metallic Materials
,”
JOM
,
70
(
11
), pp.
2753
2764
.
43.
El-Atwani
,
O.
,
Esquivel
,
E.
,
Aydogan
,
E.
,
Martinez
,
E.
,
Baldwin
,
J. K.
,
Li
,
M.
,
Uberuaga
,
B. P.
, and
Maloy
,
S. A.
,
2019
, “
Unprecedented Irradiation Resistance of Nanocrystalline Tungsten With Equiaxed Nanocrystalline Grains to Dislocation Loop Accumulation
,”
Acta Mater.
,
165
, pp.
118
128
.
44.
El-Atwani
,
O.
,
Nathaniel
,
J. E.
,
Leff
,
A. C.
,
Hattar
,
K.
, and
Taheri
,
M. L.
,
2017
, “
Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron Under Irradiation
,”
Sci. Rep.
,
7
(
1
), p.
1836
.
45.
Odette
,
G. R.
,
Alinger
,
M. J.
, and
Wirth
,
B. D.
,
2008
, “
Recent Developments in Irradiation-Resistant Steels
,”
Annu. Rev. Mater. Res.
,
38
(
1
), pp.
471
503
.
46.
Zhao
,
H.
,
Zeng
,
X.
,
Yang
,
X.
,
Chen
,
W.
, and
Wu
,
J.
,
2020
, “
Investigation of the Temperature Effect on the Primary Radiation Damage Near the Grain Boundary in Tungsten Using Molecular Dynamics Simulations
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
476
, pp.
32
39
.
47.
Voskoboinikov
,
R. E.
,
2013
, “
Interaction of Collision Cascades With an Isolated Edge Dislocation in Aluminium
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
303
, pp.
125
128
.
48.
Kinchin
,
G. H.
, and
Pease
,
R. S.
,
1955
, “
The Displacement of Atoms in Solids by Radiation
,”
Rep. Prog. Phys.
,
18
(
1
), pp.
1
51
.
49.
Lindhard
,
J.
,
Scharff
,
M.
, and
Schiøtt
,
H. E.
,
1963
,
Range Concepts and Heavy Ion Ranges
,
Munksgaard
,
Copenhagen
.
50.
Norgett
,
M. J.
,
Robinson
,
M. T.
, and
Torrens
,
I. M.
,
1975
, “
A Proposed Method of Calculating Displacement Dose Rates
,”
Nucl. Eng. Des.
,
33
(
1
), pp.
50
54
.
51.
Nordlund
,
K.
,
Zinkle
,
S. J.
,
Sand
,
A. E.
,
Granberg
,
F.
,
Averback
,
R. S.
,
Stoller
,
R.
,
Suzudo
,
T.
, et al
,
2018
, “
Improving Atomic Displacement and Replacement Calculations With Physically Realistic Damage Models
,”
Nat. Commun.
,
9
(
1
), p.
1084
.
52.
Landau
,
D.
, and
Binder
,
K.
,
2021
,
A Guide to Monte Carlo Simulations in Statistical Physics
, 5th ed.,
Cambridge University Press
,
Cambridge, UK
.
53.
Chen
,
E. Y.
,
Deo
,
C.
, and
Dingreville
,
R.
,
2019
, “
Reduced-Order Atomistic Cascade Method for Simulating Radiation Damage in Metals
,”
J. Phys. Condens. Matter
,
32
(
4
), p.
045402
.
54.
Zhao
,
S.
,
2022
, “
Application of Machine Learning in Understanding the Irradiation Damage Mechanism of High-Entropy Materials
,”
J. Nucl. Mater.
,
559
, p.
153462
.
55.
Wang
,
Y.
,
Liu
,
J.
,
Li
,
J.
,
Mei
,
J.
,
Li
,
Z.
,
Lai
,
W.
, and
Xue
,
F.
,
2022
, “
Machine-Learning Interatomic Potential for Radiation Damage Effects in bcc-Iron
,”
Comput. Mater. Sci.
,
202
, p.
110960
.
56.
Niu
,
H.
,
Zhao
,
J.
,
Li
,
H.
,
Sun
,
Y.
,
Park
,
J. H.
,
Jing
,
Y.
,
Li
,
W.
,
Yang
,
J.
, and
Li
,
X.
,
2023
, “
A Machine-Learning Interatomic Potential to Understand Primary Radiation Damage of Silicon
,”
Comput. Mater. Sci.
,
218
, p.
111970
.
57.
Koskenniemi
,
M.
,
Byggmästar
,
J.
,
Nordlund
,
K.
, and
Djurabekova
,
F.
,
2023
, “
Efficient Atomistic Simulations of Radiation Damage in W and W–Mo Using Machine-Learning Potentials
,”
J. Nucl. Mater.
,
577
, p.
154325
.
58.
Devanathan
,
R.
, and
Weber
,
W. J.
,
2007
, “
Radiation Effects in a Model Ceramic for Nuclear Waste Disposal
,”
JOM
,
59
(
4
), pp.
32
35
.
59.
Jin
,
M.
, and
Cao
,
P.
,
2020
, “
Revealing the Strain Effect on Radiation Response of Amorphous–Crystalline Cu-Zr Laminate
,”
JOM
,
72
(
2
), pp.
868
876
.
60.
Chartier
,
A.
,
Van Brutzel
,
L.
,
Pannier
,
B.
, and
Baranek
,
P.
,
2015
, “
Atomic Scale Mechanisms for the Amorphisation of Irradiated Graphite
,”
Carbon
,
91
, pp.
395
407
.
61.
Jin
,
M.
,
Cao
,
P.
,
Yip
,
S.
, and
Short
,
M. P.
,
2018
, “
Radiation Damage Reduction by Grain-Boundary Biased Defect Migration in Nanocrystalline Cu
,”
Acta Mater.
,
155
, pp.
410
417
.
62.
Uberuaga
,
B. P.
,
Simonnin
,
P.
,
Rosso
,
K. M.
,
Schreiber
,
D. K.
, and
Asta
,
M.
,
2022
, “
The Effect of Cr Alloying on Defect Migration at Ni Grain Boundaries
,”
J. Mater. Sci.
,
57
(
23
), pp.
10499
10516
.
63.
Bacon
,
D. J.
,
Gao
,
F.
, and
Osetsky
,
Y. N.
,
2000
, “
The Primary Damage State in fcc, bcc and hcp Metals as Seen in Molecular Dynamics Simulations
,”
J. Nucl. Mater.
,
276
(
1–3
), pp.
1
12
.
64.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
65.
Parashar
,
A.
, and
Singh
,
D.
,
2017
, “
Molecular Dynamics Based Study of an Irradiated Single Crystal of Niobium
,”
Comput. Mater. Sci.
,
131
, pp.
48
54
.
66.
Singh
,
D.
,
Sharma
,
P.
, and
Parashar
,
A.
,
2020
, “
Atomistic Simulations to Study Point Defect Dynamics in Bi-Crystalline Niobium
,”
Mater. Chem. Phys.
,
255
, p.
123628
.
67.
Bagheri
,
S.
,
Strohfeldt
,
N.
,
Ubl
,
M.
,
Berrier
,
A.
,
Merker
,
M.
,
Richter
,
G.
,
Siegel
,
M.
, and
Giessen
,
H.
,
2018
, “
Niobium as Alternative Material for Refractory and Active Plasmonics
,”
ACS Photonics
,
5
(
8
), pp.
3298
3304
.
68.
Hamdy Makhlouf
,
A. S.
,
2006
, “
Electrochemical Impedance Spectroscopy Study of the Corrosion Behavior of Some Niobium Bearing Stainless Steels in 3.5% NaCl
,”
Int. J. Electrochem. Sci.
,
1
(
4
), pp.
171
180
.
69.
Perkins
,
R. A.
, and
Meier
,
G. H.
,
1990
, “
The Oxidation Behavior and Protection of Niobium
,”
JOM
,
42
(
8
), pp.
17
21
.
70.
Lin
,
D.-Y.
,
Song
,
H.
, and
Hui
,
X. D.
,
2017
, “
Molecular Dynamics Simulation of Threshold Displacement Energy and Primary Damage State in Niobium
,”
arXiv:1702.03598
.
71.
Vizoso
,
D.
,
Deo
,
C.
, and
Dingreville
,
R.
,
2019
, “
Scaling Laws and Stability of Nano-Sized Defect Clusters in Niobium via Atomistic Simulations and Statistical Analysis
,”
J. Mater. Sci.
,
54
(
22
), pp.
14002
14028
.
72.
Manna
,
M.
, and
Pal
,
S.
,
2023
, “
Molecular Dynamics Simulation for Radiation Response of Nb Bicrystal Having Σ 13, Σ 29, and Σ 85 Grain Boundary
,”
J. Appl. Phys.
,
133
(
16
), p.
165902
.
73.
Chen
,
E. Y.
,
Deo
,
C.
, and
Dingreville
,
R.
,
2019
, “
Irradiation Resistance of Nanostructured Interfaces in Zr–Nb Metallic Multilayers
,”
J. Mater. Res.
,
34
(
13
), pp.
2239
2251
.
74.
Cheng
,
J.
,
Luo
,
J.
, and
Yang
,
K.
,
2018
, “
Generating Periodic Grain Boundary Structures: Algorithm and Open-Source Python Library
,”
Comput. Mater. Sci.
,
155
, pp.
92
103
.
75.
Randle
,
V.
,
2001
, “
The Coincidence Site Lattice and the ‘Sigma Enigma’
,”
Mater. Charact.
,
47
(
5
), pp.
411
416
.
76.
Derlet
,
P. M.
,
Nguyen-Manh
,
D.
, and
Dudarev
,
S. L.
,
2007
, “
Multiscale Modeling of Crowdion and Vacancy Defects in Body-Centered-Cubic Transition Metals
,”
Phys. Rev. B
,
76
(
5
), p.
054107
.
77.
Finkenstadt
,
D.
,
Bernstein
,
N.
,
Feldman
,
J. L.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
,
2006
, “
Vibrational Modes and Diffusion of Self-Interstitial Atoms in Body-Centered-Cubic Transition Metals: A Tight-Binding Molecular-Dynamics Study
,”
Phys. Rev. B
,
74
(
18
), p.
184118
.
78.
Ackland
,
G. J.
, and
Thetford
,
R.
,
1987
, “
An Improved N-Body Semi-Empirical Model for Body-Centred Cubic Transition Metals
,”
Philos. Mag. A
,
56
(
1
), pp.
15
30
.
79.
Fellinger
,
M. R.
,
Park
,
H.
, and
Wilkins
,
J. W.
,
2010
, “
Force-Matched Embedded-Atom Method Potential for Niobium
,”
Phys. Rev. B
,
81
(
14
), p.
144119
.
80.
Singh
,
D.
, and
Parashar
,
A.
,
2018
, “
Effect of Symmetrical and Asymmetrical Tilt Grain Boundaries on Radiation-Induced Defects in Zirconium
,”
J. Phys. D: Appl. Phys.
,
51
(
26
), p.
265301
.
81.
Biersack
,
J. P.
, and
Ziegler
,
J. F.
,
1982
, “
Refined Universal Potentials in Atomic Collisions
,”
Nucl. Instrum. Methods Phys. Res.
,
194
(
1–3
), pp.
93
100
.
82.
Becquart
,
C. S.
,
De Backer
,
A.
,
Olsson
,
P.
, and
Domain
,
C.
,
2021
, “
Modelling the Primary Damage in Fe and W: Influence of the Short Range Interactions on the Cascade Properties: Part 1—Energy Transfer
,”
J. Nucl. Mater.
,
547
, p.
152816
.
83.
De Backer
,
A.
,
Becquart
,
C. S.
,
Olsson
,
P.
, and
Domain
,
C.
,
2021
, “
Modelling the Primary Damage in Fe and W: Influence of the Short-Range Interactions on the Cascade Properties: Part 2—Multivariate Multiple Linear Regression Analysis of Displacement Cascades
,”
J. Nucl. Mater.
,
549
, p.
152887
.
84.
Polak
,
E.
, and
Ribiere
,
G.
,
1969
, “
Note on Convergence of Conjugate Direction Methods
,”
Rev. Fr. Inform. Rech. Operationnelle
,
3
, p.
35
.
85.
Nosé
,
S.
,
1984
, “
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
,
52
(
2
), pp.
255
268
.
86.
Sand
,
A. E.
,
Dudarev
,
S. L.
, and
Nordlund
,
K.
,
2013
, “
High-Energy Collision Cascades in Tungsten: Dislocation Loops Structure and Clustering Scaling Laws
,”
EPL
,
103
(
4
), p.
46003
.
87.
Zinkle
,
S. J.
, and
Snead
,
L. L.
,
2018
, “
Opportunities and Limitations for Ion Beams in Radiation Effects Studies: Bridging Critical Gaps Between Charged Particle and Neutron Irradiations
,”
Scr. Mater.
,
143
, pp.
154
160
.
88.
Evans
,
D. J.
, and
Holian
,
B. L.
,
1985
, “
The Nose–Hoover Thermostat
,”
J. Chem. Phys.
,
83
(
8
), pp.
4069
4074
.
89.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
90.
Zou
,
P. F.
, and
Bader
,
R. F. W.
,
1994
, “
A Topological Definition of a Wigner–Seitz Cell and the Atomic Scattering Factor
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
,
50
(
6
), pp.
714
725
.
91.
Than
,
Y. R.
, and
Grimes
,
R. W.
,
2021
, “
Predicting Radiation Damage in Beryllium
,”
Philos. Mag.
,
101
(
3
), pp.
306
325
.
92.
Sahi
,
Q.
, and
Kim
,
Y.-S.
,
2018
, “
Primary Radiation Damage Characterization of α-Iron Under Irradiation Temperature for Various PKA Energies
,”
Mater. Res. Express
,
5
(
4
), p.
046518
.
93.
Setyawan
,
W.
,
Nandipati
,
G.
,
Roche
,
K. J.
,
Heinisch
,
H. L.
,
Wirth
,
B. D.
, and
Kurtz
,
R. J.
,
2015
, “
Displacement Cascades and Defects Annealing in Tungsten, Part I: Defect Database From Molecular Dynamics Simulations
,”
J. Nucl. Mater.
,
462
, pp.
329
337
.
You do not currently have access to this content.