Ultrasonic consolidation of fiber optics in metals is of major importance allowing surface embedding and protecting the fibers from exposure to open environment. The paper investigates the computational modeling of this process of embedding fibers at the aluminum subsurface. This new method provides an opportunity to develop sensory materials (Mekid et al., 2015, “Towards Sensor Array Materials: Can Failure be Delayed?” Sci. Technol. Adv. Mater., 16(3), p. 034607) and new types of nervous materials (Mekid and Kwon, 2009, “Nervous Materials: A New Approach for Better Control, Reliability and Safety of Structures,” Sci. Adv. Mater., 1(3), pp. 276–285) for structural health monitoring applications. A thermo-mechanical analysis of embedding SiC fiber in aluminum substrate has been conducted. The temperature distribution was obtained using a thermal model with process-dependent heat flux at the sonotrode/foil interface, which is coupled to the structural model in an iterative manner for simulating fiber embedment. The structural model uses a process-dependent plastic flow rule with an isotropic hardening model. A ductile damage model is employed for the first time in simulating such problems in addition to the use of real material properties of the fiber, which has resulted in better numerical results. Both of these factors help in determining the extent of damage particularly to the fiber/sensor being embedded. The experimental test has shown good agreement.

References

1.
Saheb
,
N.
and
Mekid
,
S.
,
2015
, “
Fiber-Embedded Metallic Materials: From Sensing Towards Nervous Behavior
,”
Materials
,
8
(
11
), pp.
7938
7961
.
2.
Mekid
,
S.
, and
Kwon
,
O. J.
,
2009
, “
Nervous Materials: A New Approach for Better Control, Reliability and Safety of Structures
,”
Sci. Adv. Mater.
,
1
(
3
), pp.
276
285
.
3.
Saheb
,
N.
, and
Mekid
,
S.
,
2015
, “
Fiber-Embedded Metallic Materials: From Sensing Towards Nervous Behavior
,”
Materials
,
8
(
11
), pp.
7938
7961
.
4.
Tai
,
Y.
, and
Lubineau
,
G.
,
2016
, “
Double-Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradient-Coated Thread for Multidimensional Flexible Pressure-Sensing Devices
,”
Adv. Funct. Mater.
,
26
(
23
), p.
4037
.
5.
Jones
,
J. B.
,
1961
, “
Phenomenological Considerations in Ultrasonic Welding
,”
Weld. J.
,
40
(
4
), pp.
289s
305s
.
6.
Daniels
,
H. P. C.
,
1965
, “
Ultrasonic Welding
,”
Ultrasonics
,
3
(
4
), pp.
190
196
.
7.
Gao
,
Y.
, and
Doumanidis
,
C.
,
2002
, “
Mechanical Analysis of Ultrasonic Bonding for Rapid Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
426
434
.
8.
Doumanidis
,
C.
, and
Gao
,
Y.
,
2004
, “
Mechanical Analysis of Ultrasonic Welding
,”
Weld. J.
,
4
, pp.
140
146
.
9.
Ding
,
Y.
,
Kim
,
J.
, and
Pin
,
T.
,
2006
, “
Numerical Analysis of Ultrasonic Wire Bonding: Effects of Bonding Parameters on Contact Pressure and Frictional Energy
,”
Mech. Mater.
,
38
(
1–2
), pp.
11
24
.
10.
Ding
,
Y.
, and
Kim
,
J.
,
2008
, “
Numerical Analysis of Ultrasonic Wire Bonding—Part 2: Effects of Bonding Parameters on Temperature Rise
,”
Microelectron. Reliab.
,
48
(
1
), pp.
149
157
.
11.
Zhang
,
C.
, and
Li
,
L.
,
2010
, “
Effect of Substrate Dimensions on Dynamics of Ultrasonic Consolidation
,”
Ultrasonics
,
50
(
8
), pp.
811
823
.
12.
Kelly
,
G. S.
,
2012
, “
A Thermo-Mechanical Finite Element Analysis of Acoustic Softening During Ultrasonic Consolidation of Aluminum Foils
,”
M.S. thesis
, University of Delaware, Newark, DE.
13.
Takahashi
,
Y.
,
Maeda
,
M.
,
Suzuki
,
S.
, and
Ohyama
,
Y.
,
2011
, “
Numerical Analysis of Deformation and Thermal Behavior During Ultrasonic Al Ribbon Bonding
,”
Q. J. Jpn. Weld. Soc.
,
29
(
3
), pp.
138s
141s
.
14.
Takahashi
,
Y.
,
Suzuki
,
S.
,
Ohyama
,
Y.
, and
Maeda
,
M.
,
2012
, “
Numerical Analysis of Interfacial Deformation and Temperature Rise During Ultrasonic Al Ribbon Bonding
,”
J. Phys.: Conf. Ser.
,
379
(
1
), p.
012128
.
15.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
,
2004
, “
Ultrasonic Consolidation for Embedding SMA Fibers Within Aluminum Matrices
,”
Compos. Struct.
,
66
(
1–4
), pp.
421
427
.
16.
Kong
,
C. Y.
, and
Soar
,
R. C.
,
2005
, “
Fabrication of Metal-Matrix Composites and Adaptive Composites Using Ultrasonic Consolidation Process
,”
Mater. Sci. Eng. A.
,
412
(
1–2
), pp.
12
18
.
17.
Mou
,
C.
,
Safari
,
P.
,
Li
,
D.
,
Zhou
,
K.
,
Zhang
,
L.
,
Soar
,
R.
, and
Bennion
,
I.
,
2009
, “
Smart Structure Sensors Based on Embedded Fiber Bragg Grating Arrays in Aluminum Alloy Matrix by Ultrasonic Consolidation
,”
Meas. Sci. Technol.
,
20
(
3
), p.
034013
.
18.
Li
,
Y.
,
Liu
,
W.
,
Feng
,
Y.
, and
Zhang
,
H.
,
2012
, “
Ultrasonic Embedding of Nickel-Coated Fiber Bragg Grating in Aluminum and Associated Sensing Characteristics
,”
Opt. Fiber Technol.
,
18
(
1
), pp.
7
13
.
19.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2011
, “
Fibre Embedding in Aluminium Alloy 3003 Using Ultrasonic Consolidation Process–Thermo-Mechanical Analyses
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9
), pp.
997
1009
.
20.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2011
, “
Finite Element Analysis of Ultrasonic Insertion of SiC Fibre in Aluminium Alloy 6061
,”
Int. J. Mater. Eng. Innovation
,
2
(
3–4
), pp.
182
202
.
21.
Siddiq
,
A.
, and
El Sayed
,
T.
,
2012
, “
A Thermomechanical Crystal Plasticity Constitutive Model for Ultrasonic Consolidation
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
241
251
.
22.
ABAQUS
,
2013
, “
ABAQUS Documentation
,” ABAQUS, Providence, RI, accessed Feb. 22, 2016, http://129.97.46.200:2080/v6.13.
23.
Siddiq
,
A.
, and
Ghassemieh
,
E.
,
2008
, “
Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects
,”
Mech. Mater.
,
40
(
12
), pp.
982
1000
.
24.
Neutrium
,
2012
, “
Thermal Contact Resistance
,” Native Dynamics, Northmead, NSW, Australia, accessed Mar. 20, 2016, https://neutrium.net/heat_transfer/thermal-contact-resistance/
25.
Accuratus Corporation
,
2013
, “
Silicon Carbide, SiC Ceramic Properties
,” Accuratus, Phillipsburg, NJ, accessed Mar. 28, 2016, http://accuratus.com/silicar.html
26.
Ravi-Chandar
,
A. G. K.
,
2012
, “
Ductile Failure Behavior of Polycrystalline Al 6061-T6
,”
Int. J. Fract.
,
174
(
2
), pp.
177
202
.
27.
Wu
,
H.-C.
,
2004
,
Continuum Mechanics and Plasticity
,
CRC Press
,
Boca Raton, FL
.
28.
Mekid
,
S.
,
Schlegel
,
T.
,
Aspragathos
,
N.
, and
Teti
,
R.
,
2007
, “
Foresight Formulation in Innovative Production, Automation and Control Systems
,”
Foresight
,
9
(
5
), pp.
35
47
.
You do not currently have access to this content.