A model to predict the elastic material properties of reticulated porous ceramics (RPCs) based on the microstructural geometry is presented. The RPC is represented by a repeating unit structure of truncated octahedrons (tetrakaidecahedrons) with the ligaments represented by the cell edges. The deformations of the ligaments in the cellular structure under applied loads are used to determine the effective moduli and Poisson's ratio of the bulk material. The ligament cross section is represented as having a Plateau border exterior surface with a cusp half-angle that is varied between 0 and 90 deg, and a Plateau border interior void with a cusp half-angle of zero, representative of the ranges seen in RPCs. The ligament cross-sectional area is permitted to vary along its length and the distance between internal and external cusps is assumed constant. The relative density of the foam, corresponding to the length, cusp distances, and external-cusp half-angle of the ligaments, is determined using solid geometry. The relative density has the dominant effect on the moduli, while normalized ligament length varies the moduli by 11–49% at a specified relative density. The impact of the external shape of a ligament on the relative moduli is insignificant. The model is validated through comparisons with the measured elastic properties of RPCs in the literature and new data. The model is the first to consider the effect of the microstructural features of ligaments of RPCs on the elastic moduli of the bulk material.

References

1.
Brockmeyer
,
J. W.
, and
Aubrey
,
L. S.
,
1987
, “
Application of Ceramic Foam Filters in Molten Metal Filtration
,”
Application of Refractories: Ceramic Engineering and Science Proceedings
,
W. J.
Smothers
, ed., Vol.
8
,
Wiley
,
Hoboken, NJ
, pp.
63
74
.
2.
Adler
,
J.
,
2005
, “
Ceramic Diesel Particulate Filters
,”
Int. J. Appl. Ceram. Technol.
,
2
(
6
), pp.
429
439
.
3.
Barra
,
A. J.
, and
Ellzey
,
J. L.
,
2004
, “
Heat Recirculation and Heat Transfer in Porous Burners
,”
Combust. Flame
,
137
(
1–2
), pp.
230
241
.
4.
Chen
,
Q. Z.
,
Thompson
, I
. D.
, and
Boccaccini
,
A. R.
,
2006
, “
45S5 Bioglass®-Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
27
(
11
), pp.
2414
2425
.
5.
Schwartzwalder
,
K.
, and
Somers
,
A. V.
,
1963
, “
Method of Making Porous Ceramic Articles
,”
U.S. Patent No. 3090094
.
6.
Saggio-Woyansky
,
J.
,
Scott
,
C. E.
, and
Minnear
,
W. P.
,
1992
, “
Processing of Porous Ceramics
,”
Am. Ceram. Soc. Bull.
,
71
(
11
), pp.
1674
1682
.
7.
Zhu
,
X.
,
Jiang
,
D.
,
Tan
,
S.
, and
Zhang
,
Z.
,
2001
, “
Improvement in the Strut Thickness of Reticulated Porous Ceramics
,”
J. Am. Ceram. Soc.
,
84
(
7
), pp.
1654
1656
.
8.
Yao
,
X.
,
Tan
,
S.
,
Huang
,
Z.
, and
Jiang
,
D.
,
2006
, “
Effect of Recoating Slurry Viscosity on the Properties of Reticulated Porous Silicon Carbide Ceramics
,”
Ceram. Int.
,
32
(
2
), pp.
137
142
.
9.
Zhu
,
X.
,
Jiang
,
D.
, and
Tan
,
S.
,
2001
, “
Improvement in the Strength of Reticulated Porous Ceramics by Vacuum Degassing
,”
Mater. Lett.
,
51
(
4
), pp.
363
367
.
10.
Plateau
,
J. A. F.
,
1873
,
Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires
,
Gauthier-Villars
,
Paris, France
.
11.
Matzke
,
E. B.
,
1946
, “
The Three-Dimensional Shape of Bubbles in Foam—An Analysis of the Role of Surface Forces in Three-Dimensional Cell Shape Determination
,”
Am. J. Bot.
,
33
(
1
), pp.
58
80
.
12.
Gong
,
L.
,
Kyriakides
,
S.
, and
Jang
,
W.-Y.
,
2005
, “
Compressive Response of Open-Cell Foams—Part I: Morphology and Elastic Properties
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1355
1379
.
13.
D'Angelo
,
C.
,
Ortona
,
A.
, and
Colombo
,
P.
,
2012
, “
Finite Element Analysis of Reticulated Ceramics Under Compression
,”
Acta Mater.
,
60
(
19
), pp.
6692
6702
.
14.
Hagiwara
,
H.
, and
Green
,
D. J.
,
1987
, “
Elastic Behavior of Open-Cell Alumina
,”
J. Am. Ceram. Soc.
,
70
(
11
), pp.
811
815
.
15.
Zhu
,
H. X.
,
Knott
,
J. F.
, and
Mills
,
N. J.
,
1997
, “
Analysis of the Elastic Properties of Open-Cell Foams With Tetrakaidecahedral Cells
,”
J. Mech. Phys. Solids
,
45
(
3
), pp.
319
343
.
16.
Warren
,
W. E.
, and
Kraynik
,
A. M.
,
1997
, “
Linear Elastic Behavior of a Low-Density Kelvin Foam With Open Cells
,”
ASME J. Appl. Mech.
,
64
(
4
), p.
787
.
17.
Jang
,
W. Y.
,
Kraynik
,
A. M.
, and
Kyriakides
,
S.
,
2008
, “
On the Microstructure of Open-Cell Foams and Its Effect on Elastic Properties
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
1845
1875
.
18.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London A
,
382
(
1782
), pp.
43
59
.
19.
Costa Oliveira
,
F. A.
,
2005
, “
Elastic Moduli of Open-Cell Cordierite Foams
,”
J. Non-Cryst. Solids
,
351
(
19–20
), pp.
1623
1629
.
20.
Maiti
,
S. K.
,
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1984
, “
Deformation and Energy Absorption Diagrams for Cellular Solids
,”
Acta Metal.
,
32
(
11
), pp.
1963
1975
.
21.
Gere
,
J. M.
,
2001
,
Mechanics of Materials
, 5th ed.,
Brooks/Cole
,
Pacific Grove, CA
.
22.
The MathWorks
,
2012
, “
MATLAB R2012a (Computer Software)
,” The MathWorks, Inc, Natick, MA.
23.
Warren
,
W. E.
,
Neilsen
,
M. K.
, and
Kraynik
,
A. M.
,
1997
, “
Torsional Rigidity of a Plateau Border
,”
Mech. Res. Commun.
,
24
(
6
), pp.
667
672
.
24.
Parametric Technology
,
2012
, “
Creo Elements/Pro 5.0 (Computer Software)
,” Parametric Technology Corporation, Needham, MA.
25.
Sedler
,
S. J.
,
Chase
,
T. R.
, and
Davidson
,
J. H.
, 2017, “
Mechanical Properties of Gelcast Cerium Dioxide From 23 to 1500 °C
,”
ASME J. Eng. Mater. Technol.
,
139
(1), p. 011008.
You do not currently have access to this content.