This paper presents a double-slip/double-twin polycrystal plasticity model using finite element solution to investigate the kinetics of deformation twinning of medium manganese (Mn) twinning-induced plasticity (TWIP) steels. Empirical equations are employed to estimate the stacking fault energy (SFE) of TWIP steels and the critical resolved shear stress (CRSS) for dislocation slip and deformation twinning, respectively. The results suggest that the evolution of twinning in Fe–xMn–1.4Al–0.6 C (x = 11.5, 13.5, 15.5, 17.5, and 19.5 mass%) TWIP steels, and its relation to the Mn content, can explain the effect of Mn on mechanical properties. By comparing the double-slip/double-twin model to a double-slip model, the predicted results essentially reveal that the interaction behavior between dislocation slip and deformation twinning can lead to an additional work hardening. Also, numerical simulations are carried out to study the influence of boundary conditions on deformation behavior and twin formation. The nucleation and growth of twinning are found to depend on internal properties (e.g., mismatch orientation of grains and stress redistribution) as well as on external constraints (e.g., the applied boundary conditions) of the material.

References

1.
Shen
,
F.
,
Zhou
,
J.
,
Liu
,
Y.
,
Zhu
,
R.
,
Zhang
,
S.
, and
Wang
,
Y.
,
2010
, “
Deformation Twinning Mechanism and Its Effects on the Mechanical Behaviors of Ultra-fine Grained and Nanocrystalline Copper
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
226
235
.10.1016/j.commatsci.2010.04.044
2.
Meyers
,
M. A.
,
Vöhringer
,
O.
, and
Lubarda
,
V. A.
,
2001
, “
The Onset of Twinning in Metals: A Constitutive Description
,”
Acta Mater.
,
49
(
19
), pp.
4025
4039
.10.1016/S1359-6454(01)00300-7
3.
Kim
,
J.
,
Lee
,
S.-J.
, and
De Cooman
,
B. C.
,
2011
, “
Effect of Al on the Stacking Fault Energy of Fe-18Mn-0.6C Twinning-Induced Plasticity
,”
Scr. Mater.
,
65
(
4
), pp.
363
366
.10.1016/j.scriptamat.2011.05.014
4.
Van Houtte
,
P
.,
1978
, “
Simulation of the Rolling and Shear Texture of Brass by the Taylor Theory Adapted for Mechanical Twinning
,”
Acta Metall.
,
26
(
4
), pp.
591
604
.10.1016/0001-6160(78)90111-6
5.
Choi
,
S. H.
,
Kim
,
D. W.
,
Seong
,
B. S.
, and
Rollett
,
A. D.
,
2011
, “
3-D Simulation of Spatial Stress Distribution in an AZ31 Mg Alloy Sheet Under In-Plane Compression
,”
Int. J. Plast.
,
27
(
10
), pp.
1702
1720
.10.1016/j.ijplas.2011.05.014
6.
Thamburaja
,
P.
,
Pan
,
H.
, and
Chau
,
F. S.
,
2009
, “
The Evolution of Microstructure During Twinning: Constitutive Equations, Finite-Element Simulations and Experimental Verification
,”
Int. J. Plast.
,
25
(
11
), pp.
2141
2168
.10.1016/j.ijplas.2009.02.004
7.
Wang
,
H.
,
Wu
,
P. D.
,
Wang
,
J.
, and
Tomé
,
C. N.
,
2013
, “
A Crystal Plasticity Model for Hexagonal Close Packed (HCP) Crystals Including Twinning and De-Twinning Mechanisms
,”
Int. J. Plast.
,
49
, pp.
36
52
.10.1016/j.ijplas.2013.02.016
8.
Prakash
,
A.
,
Weygand
,
S. M.
, and
Riedel
,
H.
,
2009
, “
Modeling the Evolution of Texture and Grain Shape in Mg Alloy AZ31 Using the Crystal Plasticity Finite Element Method
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
744
750
.10.1016/j.commatsci.2008.06.015
9.
Clayton
,
J. D.
,
2011
,
Nonlinear Mechanics of Crystals
,
Springer, Dordrecht
,
The Netherlands
, pp.
379
421
.
10.
Wang
,
J.
,
Beyerlein
,
I. J.
,
Hirth
,
J. P.
, and
Tomé
,
C. N.
,
2011
, “
Twinning Dislocations on and Planes in Hexagonal Close-Packed Crystals
,”
Acta Mater.
,
59
(
10
), pp.
3990
4001
.10.1016/j.actamat.2011.03.024
11.
Yan
,
K.
,
Carr
,
D. G.
,
Callaghan
,
M. D.
,
Liss
,
K.-D.
, and
Li
,
H.
,
2010
, “
Deformation Mechanisms of Twinning-Induced Plasticity Steels: In Situ Synchrotron Characterization and Modeling
,”
Scr. Mater.
,
62
(
5
), pp.
246
249
.10.1016/j.scriptamat.2009.11.008
12.
Wang
,
Y. Y.
,
Sun
,
X.
,
Wang
,
Y. D.
,
Hu
,
X. H.
, and
Zbib
,
H. M.
,
2014
, “
A Mechanism-Based Model for Deformation Twinning in Polycrystalline FCC Steel
,”
Mater. Sci. Eng. A
,
607
, pp.
206
218
.10.1016/j.msea.2014.04.010
13.
Suzuki
,
H.
, and
Barrett
,
C. S.
,
1958
, “
Deformation Twinning in Silver-Gold Alloys
,”
Acta Metall.
,
6
(
3
), pp.
156
165
.10.1016/0001-6160(58)90002-6
14.
Salem
,
A. A.
,
Kalidindi
,
S. R.
, and
Semiatin
,
S. L.
,
2005
, “
Strain Hardening Due to Deformation Twinning in Alpha-Titanium: Constitutive Relations and Crystal-Plasticity Modeling
,”
Acta Mater.
,
53
(
12
), pp.
3495
3502
.10.1016/j.actamat.2005.04.014
15.
Saeed-Akbari
,
A.
,
Imlau
,
J.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2009
, “
Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3076
3090
.10.1007/s11661-009-0050-8
16.
Soulami
,
A.
,
Choi
,
K. S.
,
Shen
,
Y. F.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2011
, “
On Deformation Twinning in a 17.5%Mn–TWIP Steel: A Physically Based Phenomenological Model
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1402
1408
.10.1016/j.msea.2010.10.031
17.
Gutierrez-Urrutia
,
I.
,
Zaefferer
,
S.
, and
Raabe
,
D.
,
2010
, “
The Effect of Grain Size and Grain Orientation on Deformation Twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP Steel
,”
Mater. Sci. Eng. A
,
527
(
15
), pp.
3552
3560
.10.1016/j.msea.2010.02.041
18.
Wei
,
Y
.,
2011
, “
Scaling of Maximum Strength With Grain Size in Nanotwinned FCC Metals
,”
Phys. Rev. B
,
83
(
13
), p.
132104
.10.1103/PhysRevB.83.132104
19.
de las Cuevas
,
F.
,
Reis
,
M.
,
Ferraiuolo
,
A.
,
Pratolongo
,
G.
,
Karjalainen
,
L. P.
,
Alkorta
,
J.
, and
Gil Sevillano
,
J.
,
2010
, “
Hall-Petch Relationship of a TWIP Steel
,”
Key Eng. Mater.
,
423
, pp.
147
152
.10.4028/www.scientific.net/KEM.423.147
20.
Babu
,
S. S.
,
Specht
,
E. D.
,
David
,
S. A.
,
Karapetrova
,
E.
,
Zschack
,
P.
,
Peet
,
M.
, and
Bhadeshia
,
H. K. D. H.
,
2005
, “
In-Situ Observations of Lattice Parameter Fluctuations in Austenite and Transformation to Bainite
,”
Metall. Mater. Trans. A
,
36
(
12
), pp.
3281
3289
.10.1007/s11661-005-0002-x
21.
Allain
,
S.
,
Chateau
,
J. P.
,
Bouaziz
,
O.
,
Migot
,
S.
, and
Guelton
,
N.
,
2004
, “
Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys
,”
Mater. Sci. Eng. A
,
387–389
, pp.
158
162
.10.1016/j.msea.2004.01.059
22.
Mayama
,
T.
,
Aizawa
,
K.
,
Tadano
,
Y.
, and
Kuroda
,
M.
,
2009
, “
Influence of Twinning Deformation and Lattice Rotation on Strength Differential Effect in Polycrystalline Pure Magnesium With Rolling Texture
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
448
455
.10.1016/j.commatsci.2009.09.009
23.
Peirce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
,
1983
, “
Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Metall.
,
31
(
12
), pp.
1951
1976
.10.1016/0001-6160(83)90014-7
24.
Walde
,
T.
, and
Riedel
,
H.
,
2007
, “
Modeling Texture Evolution During Hot Rolling of Magnesium Alloy AZ31
,”
Mater. Sci. Eng. A
,
443
(
1–2
), pp.
277
284
.10.1016/j.msea.2006.09.028
25.
Jin
,
Z. H.
,
Gumbsch
,
P.
,
Ma
,
E.
,
Albe
,
K.
,
Lu
,
K.
,
Hahn
,
H.
, and
Gleiter
,
H.
,
2006
, “
The Interaction Mechanism of Screw Dislocations With Coherent Twin Boundaries in Different Face-Centred Cubic Metals
,”
Scr. Mater.
,
54
(
6
), pp.
1163
1168
.10.1016/j.scriptamat.2005.11.072
26.
Sleeswyk
,
A. W.
, and
Helle
,
J. N.
,
1963
, “
Ductile Cleavage Fracture, Yielding and Twinning in Alpha-Iron
,”
Acta Metall.
,
11
(
3
), pp.
187
194
.10.1016/0001-6160(63)90211-6
27.
Karaman
,
I.
,
Sehitoglu
,
H.
,
Gall
,
K.
,
Chumlyakov
,
Y. I.
, and
Maier
,
H. J.
,
2000
, “
Deformation of Single Crystal Hadfield Steel by Twinning and Slip
,”
Acta Mater.
,
48
(
6
), pp.
1345
1359
.10.1016/S1359-6454(99)00383-3
28.
Curtze
,
S.
, and
Kuokkala
,
V. T.
,
2010
, “
Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate
,”
Acta Mater.
,
58
(
15
), pp.
5129
5141
.10.1016/j.actamat.2010.05.049
29.
Kibey
,
S.
,
Liu
,
J. B.
,
Johnson
,
D. D.
, and
Sehitoglu
,
H.
,
2007
, “
Predicting Twinning Stress in FCC Metals: Linking Twin-Energy Pathways to Twin Nucleation
,”
Acta Mater.
,
55
(
20
), pp.
6843
6851
.10.1016/j.actamat.2007.08.042
30.
Kim
,
J.
,
Estrin
,
Y.
, and
Cooman
,
B.
,
2013
, “
Application of a Dislocation Density-Based Constitutive Model to Al-Alloyed TWIP Steel
,”
Metall. Mater. Trans. A
,
44
(
9
), pp.
4168
4182
.10.1007/s11661-013-1771-2
31.
Sun
,
X.
,
Choi
,
K. S.
,
Liu
,
W. N.
, and
Khaleel
,
M. A.
,
2009
, “
Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization
,”
Int. J. Plast.
,
25
(
10
), pp.
1888
1909
.10.1016/j.ijplas.2008.12.012
32.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2009
, “
Microstructure-Based Constitutive Modeling of TRIP Steel: Prediction of Ductility and Failure Modes Under Different Loading Conditions
,”
Acta Mater.
,
57
(
8
), pp.
2592
2604
.10.1016/j.actamat.2009.02.020
33.
Xia
,
Z.
,
Zhang
,
Y.
, and
Ellyin
,
F.
,
2003
, “
A Unified Periodical Boundary Conditions for Representative Volume Elements of Composites and Applications
,”
Int. J. Solids Struct.
,
40
(
8
), pp.
1907
1921
.10.1016/S0020-7683(03)00024-6
34.
Kouznetsova
,
V.
,
Brekelmans
,
W. A. M.
, and
Baaijens
,
F. P. T.
,
2001
, “
An Approach to Micro-Macro Modeling of Heterogeneous Materials
,”
Comput. Mech.
,
27
(
1
), pp.
37
48
.10.1007/s004660000212
You do not currently have access to this content.