In this work we derive a new version of generalized plasticity, suitable to describe phase transformations. In particular, we present a general multi surface formulation of the theory which is capable of describing the multiple and interacting loading mechanisms, which occur during phase transformations. The formulation relies crucially on the consideration of the intrinsic material (“physical”) metric as a primary internal variable and does not invoke any decomposition of the kinematical quantities into elastic and inelastic (transformation induced) parts. The new theory, besides its theoretical interest, is also important for application purposes such as the description and the prediction of the response of shape memory alloy materials. This is shown in the simplest possible setting by the introduction of a material model. The ability of the model in simulating several patterns of the experimentally observed behavior of these materials such as the pseudoelastic phenomenon and the shape memory effect is assessed by representative numerical examples.

References

1.
Wayman
,
C. M.
,
1964
,
Introduction to the Crystallography of Martensitic Transformation
,
Macmillan
,
New York
.
2.
Smallman
,
R. E.
, and
Bishop
,
R. J.
,
2000
,
Modern Physical Metallurgy and Materials Engineering
, 6th ed.,
Butterworth-Heinemann
,
Stoneham, MA
.
3.
Bhattacharya
,
K.
,
2003
,
Microstructure of Martensite. Why It Forms and How It Gives Rise to the Shape—Memory Effect?
,
Oxford University Press
,
Oxford
.
4.
Raniecki
,
B.
,
Lexcellent
,
C.
, and
Tanaka
,
K.
,
1992
, “
Thermodynamic Models of Pseudoelastic Behaviour of Shape Memory Alloys
,”
Arch. Mech.
,
44
, pp.
261
284
.
5.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1993
, “
A Continuum Model for a Thermoelastic Solid Capable of Undergoing Phase Transitions
,”
J. Mech. Phys. Solids
,
41
, pp.
451
571
.10.1016/0022-5096(93)90048-K
6.
Ivshin
,
Y.
, and
Pence
,
T.
,
1994
, “
A Thermodynamical Model for a One Variant Shape Memory Material
,”
J. Intell. Mater. Syst. Struct.
,
5
, pp.
455
473
.10.1177/1045389X9400500402
7.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
,
1994
, “
Thermomechanical Response of Shape Memory Alloy Composites
,”
J. Intell. Mater. Syst. Struct.
,
5
, pp.
333
346
.10.1177/1045389X9400500306
8.
Leclercq
,
S.
, and
Lexcellent
,
C.
,
1996
, “
A General Macroscopic Description of the Thermomechanical Behavior of Shape Memory Alloys
,”
J. Mech. Phys. Solids
,
44
, pp.
953
980
.10.1016/0022-5096(96)00013-0
9.
Lubliner
,
J.
, and
Auricchio
,
F.
,
1996
, “
Generalized Plasticity and Shape Memory Alloys
,”
Int. J. Solids Struct.
,
33
, pp.
991
1004
.10.1016/0020-7683(95)00082-8
10.
Panoskaltsis
,
V. P.
,
Bahuguna
,
S.
, and
Soldatos
,
D.
,
2004
, “
On the Thermomechanical Modeling of Shape Memory Alloys
,”
Int. J. Non-Linear Mech.
,
39
, pp.
709
722
.10.1016/S0020-7462(03)00022-2
11.
Saint-Sulpice
,
L.
,
Arbab Chirani
,
C.
, and
Calloch
,
S.
,
2009
, “
A 3D Super-Elastic Model for Shape Memory Alloys Taking Into Account Progressive Strain Under Cyclic Loadings
,”
Mech. Mater.
,
41
, pp.
12
26
.10.1016/j.mechmat.2008.07.004
12.
Malukhin
,
K.
, and
Ehmann
,
K.
,
2012
, “
A Model of the Kinetics of the Temperature-Induced Phase Induced Phase Transformation in NiTi Alloys and Its Experimental Verification
,”
J. Intell. Mater. Syst. Struct.
,
23
, pp.
35
44
.10.1177/1045389X11430728
13.
Chan
,
C. W.
,
Chan
,
S. H. J.
, and
Man
,
H. C.
,
2012
, “
1-D Constitutive Model for Evolution of Stress Induced R-Phase and Localized Lüders-Like Stress-Induced Martensitic Transformation of Super-Elastic NiTi Wires
,”
Int. J. Plast.
,
32–33
, pp.
85
105
.10.1016/j.ijplas.2011.12.003
14.
Ball
,
J. M.
, and
James
,
R. D.
,
1987
, “
Fine Phase Mixtures and Minimizers of Energy
,”
Arch. Rat. Mech. Anal.
,
100
, pp.
13
52
.10.1007/BF00281246
15.
Silhavy
,
M.
,
1999
, “
On the Compatibility of Wells
,”
J. Elast.
,
55
, pp.
11
17
.10.1023/A:1007699530458
16.
James
,
R. D.
, and
Hane
,
K. F.
,
2000
, “
Martensitic Transformations and Shape-Memory Materials
,”
Acta Mater.
,
48
, pp.
197
222
.10.1016/S1359-6454(99)00295-5
17.
Levitas
,
V. I.
, and
Preston
,
D. L.
,
2005
, “
Thermomechanical Lattice Instability and Phase Field Theory of Martensitic Phase Transformations, Twinning and Dislocations at Large Strains
,”
Phys. Lett. A
,
343
, pp.
32
39
.10.1016/j.physleta.2005.05.034
18.
Arndt
,
M.
,
Griebel
,
M.
,
Novác
,
V.
,
Rubíček
,
T.
, and
Šittner
,
P.
,
2006
, “
Martensitic Transformation in NiMnGa Single Crystals: Numerical Simulation and Experiments
,”
Int. J. Plast.
,
22
, pp.
1943
1961
.10.1016/j.ijplas.2006.03.001
19.
Müller
,
Ch.
, and
Bruhns
,
O. T.
,
2006
, “
A Thermodynamic Finite-Strain Model for Pseudoelastic Shape Memory Alloys
,”
Int. J. Plast.
,
22
, pp.
1658
1682
.10.1016/j.ijplas.2006.02.010
20.
Christ
,
D.
, and
Reese
,
S.
,
2009
, “
A Finite Element Model for Shape-Memory Alloys Considering Thermomechanical Couplings at Large Strains
,”
Int. J. Solids Struct.
,
46
, pp.
3694
3709
.10.1016/j.ijsolstr.2009.06.017
21.
Levitas
,
V. I.
, and
Ozsoy
,
I. B.
,
2009
, “
Micromechanical Modeling of Stress-Induced Phase Transformations—Part 1: Thermodynamics and Kinetics of Coupled Interface Propagation and Reorientation
,”
Int. J. Plast.
,
25
, pp.
239
280
.10.1016/j.ijplas.2008.02.004
22.
Thamburaja
,
P.
, and
Anand
,
L.
,
2000
, “
Polycrystalline Shape-Memory Materials: Effect of Crystallographic Texture
,”
J. Mech. Phys. Solids
,
49
, pp.
709
737
.10.1016/S0022-5096(00)00061-2
23.
Anand
,
L.
, and
Gurtin
,
M. E.
,
2003
, “
Thermal Effects in the Superelasticity of Crystalline Shape-Memory Materials
,”
J. Mech. Phys. Solids
,
51
, pp.
1015
1058
.10.1016/S0022-5096(03)00017-6
24.
Pan
,
H.
,
Thamburaja
,
P.
, and
Chau
,
F. S.
,
2007
, “
Multi-Axial Behavior of Shape Memory Alloys Undergoing Martensite Reorientation and Detwinning
,”
Int. J. Plast.
,
23
, pp.
711
732
.10.1016/j.ijplas.2006.08.002
25.
Manchiraju
,
S.
, and
Anderson
,
P. M.
,
2010
, “
Coupling Between Phase Transformations and Plasticity: A Microstructure-Based Finite Element Model
,”
Int. J. Plast.
,
26
, pp.
1508
1526
.10.1016/j.ijplas.2010.01.009
26.
Thamburaja
,
P.
,
2010
, “
A Finite-Deformation-Based Theory for Shape-Memory Alloys
,”
Int. J. Plast.
,
26
, pp.
1195
1219
.10.1016/j.ijplas.2009.12.004
27.
Panoskaltsis
,
V. P.
,
Soldatos
,
D.
, and
Triantafyllou
,
S. P.
,
2011
, “
Generalized Plasticity Theory for Phase Transformations
,”
Proc. Eng.
,
10
, pp.
3104
3108
.10.1016/j.proeng.2011.04.514
28.
Panoskaltsis
,
V. P.
,
Soldatos
,
D.
, and
Triantafyllou
,
S. P.
,
2011
, “
A New Model for Shape Memory Alloy Materials Under General States of Deformation and Temperature Conditions
,”
Proceedings of the 7th GRACM International Congress on Computational Mechanics
,
A. G.
Boudouvis
and
G. E.
Stavroulakis
, eds., Athens, June 30–July 2.
29.
Lubliner
,
J.
,
1974
, “
A Simple Theory of Plasticity
,”
Int. J. Solids Struct.
,
10
, pp.
313
319
.10.1016/0020-7683(74)90080-8
30.
Lubliner
,
J.
,
1980
, “
An Axiomatic Model of Rate-Independent Plasticity
,”
Int. J. Solids Struct.
,
16
, pp.
709
713
.10.1016/0020-7683(80)90012-8
31.
Lubliner
,
J.
,
1984
, “
A Maximum-Dissipation Principle in Generalized Plasticity
,”
Acta Mech.
,
52
, pp.
225
237
.10.1007/BF01179618
32.
Lubliner
,
J.
,
1987
, “
Non-Isothermal Generalized Plasticity
,”
Thermomechanical Couplings in Solids
,
H. D.
Bui
and
Q. S.
Nyugen
, eds., IUTAM, North-Holland, Amsterdam, pp.
121
133
.
33.
Ramanathan
,
G.
,
Panoskaltsis
,
V. P.
,
Mullen
,
R.
, and
Welsch
,
G.
,
2002
, “
Experimental and Computational Methods for Shape Memory Alloys
,”
Proceedings of the 15th ASCE Engineering Mechanics Conference
,
A.
Smyth
, ed.,
Columbia University
,
New York
, June 2–5.
34.
Valanis
,
K. C.
,
1995
, “
The Concept of Physical Metric in Thermodynamics
,”
Acta Mech.
,
113
, pp.
169
184
.10.1007/BF01212641
35.
Valanis
,
K. C.
, and
Panoskaltsis
,
V. P.
,
2005
, “
Material Metric, Connectivity and Dislocations in Continua
,”
Acta Mech.
,
175
, pp.
77
103
.10.1007/s00707-004-0196-9
36.
Panoskaltsis
,
V. P.
,
Soldatos
,
D.
, and
Triantafyllou
,
S., P.
,
2011
, “
The Concept of Physical Metric in Rate-Independent Generalized Plasticity
,”
Acta Mech.
,
221
, pp.
49
64
.10.1007/s00707-010-0417-3
37.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
,
1994
,
Mathematical Foundations of Elasticity
,
Dover
,
New York
.
38.
Stumpf
,
H.
, and
Hoppe
,
U.
,
1997
, “
The Application of Tensor Analysis on Manifolds to Nonlinear Continuum Mechanics—Invited Survey Article
,”
Z. Angew Math. Mech.
,
77
, pp.
327
339
.10.1002/zamm.19970770504
39.
Panoskaltsis
,
V. P.
,
Polymenakos
,
L. C.
, and
Soldatos
,
D.
,
2008
, “
On Large Deformation Generalized Plasticity
,”
J. Mech. Mater. Struct.
,
3
, pp.
441
457
.10.2140/jomms.2008.3.441
40.
Panoskaltsis
,
V. P.
,
Polymenakos
,
L. C.
, and
Soldatos
,
D.
,
2008
, “
Eulerian Structure of Generalized Plasticity: Theoretical and Computational Aspects
,”
J. Eng. Mech.
,
134
(
5
), pp.
354
361
.10.1061/(ASCE)0733-9399(2008)134:5(354)
41.
Eisenberg
,
M. A.
, and
Phillips
,
A.
,
1971
, “
A Theory of Plasticity With Non-Coincident Yield and Loading Surfaces
,”
Acta Mech.
,
11
, pp.
247
260
.10.1007/BF01176559
42.
Brezis
,
H.
,
1970
, “
On a Characterization of Flow-Invariant Sets
,”
Commun. Pure Appl. Math.
,
XXIII
, pp.
261
263
.10.1002/cpa.3160230211
43.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity
,
Springer
,
New York
.
44.
Simo
,
J. C.
,
Marsden
,
J. E.
, and
Krishnaprasad
,
P. S.
,
1988
, “
The Hamiltonian Structure of Elasticity: The Convected Representation of Solids, Rods and Plates
,”
Arch. Rat. Mech. Anal.
,
104
, pp.
125
183
.10.1007/BF00251673
45.
Simo
,
J. C.
, and
Ortiz
,
M.
,
1985
, “
A Unified Approach to Finite Deformation Plasticity Based on the Use of Hyperelastic Constitutive Equations
,”
Comput. Meth. Appl. Mech. Eng.
,
49
, pp.
221
245
.10.1016/0045-7825(85)90061-1
46.
Schutz
,
B.
,
1999
,
Geometrical Methods of Mathematical Physics
,
Cambridge University Press
,
Cambridge, UK
.
47.
Coleman
,
B. D.
, and
Gurtin
,
M.
,
1967
, “
Thermodynamics With Internal State Variables
J. Chem. Phys.
,
47
, pp.
597
613
.10.1063/1.1711937
48.
Valanis
,
K. C.
,
1972
,
Irreversible Thermodynamics of Continuous Media, Internal Variable Theory, (CISM Courses and Lectures No. 77), International Centre for Mechanical Sciences
,
Springer
,
Wien, Germany
.
49.
Lexcellent
,
C.
, and
Laydi
,
R. M.
,
2011
, “
About the Choice of a Plastic-Like Model for Shape Memory Alloys
,”
Vietnam J. Mech.
,
33
(4)
, pp.
283
291
.
50.
Likhachev
,
A. A.
, and
Koval
,
Y. N.
,
1992
, “
On the Differential Equation Describing the Hysterisis Behavior of Shape Memory Alloys
Scr. Metal. Mater.
,
27
, pp.
223
227
.10.1016/0956-716X(92)90117-W
51.
Voyiadjis
,
G. Z.
, and
Dorgan
,
R. J.
,
2007
, “
Framework Using Functional Forms of Hardening Internal State Variables in Modeling Elasto-Plastic-Damage Behavior
,”
Int. J. Plast.
,
23
, pp.
1826
1859
.10.1016/j.ijplas.2007.03.012
52.
Khan
,
A. S.
, and
Huang
,
S.
,
1995
,
Continuum Theory of Plasticity
,
John Wiley
,
New York
.
53.
Toi
,
Y.
,
Lee
,
J. B.
, and
Taya
,
M.
,
2004
, “
Finite Element Analysis of Superelastic Large Deformation Behavior of Shape Memory Alloy Helical Springs
,”
Comp. Struct.
,
82
, pp.
1685
1693
.10.1016/j.compstruc.2004.03.025
54.
Meyers
,
A.
,
Xiao
,
H.
, and
Bruhns
,
O.
,
2003
, “
Elastic Stress Ratcheting and Corotational Stress Rates
,”
Tech. Mech.
,
23
, pp.
92
102
.
You do not currently have access to this content.