Plasticity in heterogeneous metallic materials with small volumes is governed by the interactions of dislocations at interfaces. In particular, interfaces of a material confined in a small volume can strongly affect the mechanical properties of micro and nanosystems. In this paper, the framework of higher-order strain gradient plasticity theory with interfacial energy effect is used to investigate the coupling of interfacial energy with temperature and how it affects the initial yield strength (i.e., onset of plasticity) and the strain hardening rates of confined small metallic volumes. It is postulated that the interfacial energy decreases as temperature increases such that size effect decreases as temperature increases. As an application, the size effect of thermal loading of a film-substrate system is investigated. It is shown that the temperature at which the film starts to yield plastically is size-dependent, which is attributed to the size-dependent yield strength. Furthermore, the flow stress is more temperature sensitive as the size decreases.

1.
Spearot
,
D. E.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2005, “
Nucleation of Dislocations From [001] Bicrystal Interfaces in Aluminum
,”
Acta Mater.
1359-6454,
53
, pp.
3579
3589
.
2.
Khraishi
,
T. A.
, and
Zbib
,
H. M.
, 2002, “
Dislocation Dynamics Simulations of the Interaction Between a Short Rigid Fiber and a Glide Circular Dislocation Pile-Up
,”
Comput. Mater. Sci.
0927-0256,
24
, pp.
310
322
.
3.
Nicola
,
L.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
, 2003, “
Discrete Dislocation Analysis of Size Effects in Thin Films
,”
J. Appl. Phys.
0021-8979,
93
, pp.
5920
5928
.
4.
Akasheh
,
F.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Hoagland
,
R. G.
, and
Misra
,
A.
, 2007, “
Dislocation Dynamics Analysis of Dislocation Intersections in Nanoscale Metallic Multilayered Composites
,”
J. Appl. Phys.
0021-8979,
101
, p.
084314
.
5.
Venkatraman
,
R.
, and
Bravman
,
J. C.
, 1992, “
Separation of Film Thickness and Grain-Boundary Strengthening Effects in Al Thin-Films on Si
,”
J. Mater. Res.
0884-2914,
7
, pp.
2040
2048
.
6.
Lloyd
,
D. J.
, 1994, “
Particle Reinforced Aluminum and Magnesium Matrix Composites
,”
Int. Mater. Rev.
0950-6608,
39
, pp.
1
23
.
7.
Ma
,
Q.
, and
Clarke
,
D. R.
, 1995, “
Size Dependent Hardness in Silver Single Crystals
,”
J. Mater. Res.
0884-2914,
10
, pp.
853
863
.
8.
Stölken
,
J. S.
, and
Evans
,
A. G.
, 1998, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
1359-6454,
46
, pp.
5109
5115
.
9.
Haque
,
M. A.
, and
Saif
,
M. T. A.
, 2003, “
Strain Gradient Effect in Nanoscale Thin Films
,”
Acta Mater.
1359-6454,
51
, pp.
3053
3061
.
10.
Espinosa
,
H. D.
,
Prorok
,
B. C.
, and
Peng
,
B.
, 2004, “
Plasticity Size Effects in Free-Standing Submicron Polycrystalline FCC Films Subjected to Pure Tension
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
667
689
.
11.
Uchic
,
M. D.
,
Dimiduk
,
D. M.
,
Florando
,
J. N.
, and
Nix
,
W. D.
, 2004, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
0036-8075,
305
, pp.
986
989
.
12.
Xiang
,
Y.
, and
Vlassak
,
J. J.
, 2006, “
Bauschinger and Size Effects in Thin-Film Plasticity
,”
Acta Mater.
1359-6454,
54
, pp.
5449
5460
.
13.
Shizawa
,
K.
, and
Zbib
,
H. M.
, 1999, “
A Thermodynamical Theory of Gradient Elastoplasticity With Dislocation Density Tensor. I: Fundamentals
,”
Int. J. Plast.
0749-6419,
15
, pp.
899
938
.
14.
Gurtin
,
M. E.
, 2003, “
On a Framework for Small-Deformation Viscoplasticity: Free Energy, Microforces, Strain Gradients
,”
Int. J. Plast.
0749-6419,
19
, pp.
47
90
.
15.
Gurtin
,
M. E.
, and
Needleman
,
A.
, 2005, “
Boundary Conditions for Small Deformation, Single Crystal Plasticity That Account for the Burgers Vector
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1
31
.
16.
Abu Al-Rub
,
R. K.
,
Voyiadjis
,
G. Z.
, and
Bammann
,
D. J.
, 2007, “
A Thermodynamic Based Higher-Order Gradient Theory for Size Dependent Plasticity
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
2888
2923
.
17.
Fredriksson
,
P.
, and
Gudmundson
,
P.
, 2005, “
Size-Dependent Yield Strength of Thin Films
,”
Int. J. Plast.
0749-6419,
21
, pp.
1834
1854
.
18.
Aifantis
,
K. E.
, and
Willis
,
J. R.
, 2005, “
The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1047
1070
.
19.
Abu Al-Rub
,
R. K.
, 2008, “
Interfacial Gradient Plasticity Governs Scale-Dependent Yield Strength and Strain Hardening Rates in Micro/Nano Structured Metals
,”
Int. J. Plast.
0749-6419,
24
, pp.
1277
1306
.
20.
Aifantis
,
E. C.
, 1984, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
, pp.
326
330
.
21.
Abu Al-Rub
,
R. K.
, and
Voyiadjis
,
G. Z.
, 2004, “
Analytical and Experimental Determination of the Material Intrinsic Length Scale of Strain Gradient Plasticity Theory From Micro- and Nano-Indentation Experiments
,”
Int. J. Plast.
0749-6419,
20
, pp.
1139
1182
.
22.
Abu Al-Rub
,
R. K.
, 2007, “
Prediction of Micro and Nanoindentation Size Effect From Conical or Pyramidal Indentation
,”
Mech. Mater.
0167-6636,
39
, pp.
787
802
.
23.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
, 1958, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
0021-9606,
28
, pp.
258
267
.
You do not currently have access to this content.