In this work, we apply the multiscale cohesive method (Zeng and Li, 2010, “A Multiscale Cohesive Zone Model and Simulations of Fracture,” Comput. Methods Appl. Mech. Eng., 199, pp. 547–556) to simulate fracture and crack propagations in polycrystalline solids. The multiscale cohesive method uses fundamental principles of colloidal physics and micromechanics homogenization techniques to link the atomistic binding potential with the mesoscale material properties of the cohesive zone and hence, the method can provide an effective means to describe heterogeneous material properties at a small scale by taking into account the effect of inhomogeneities such as grain boundaries, bimaterial interfaces, slip lines, and inclusions. In particular, the depletion potential of the cohesive interface is made consistent with the atomistic potential inside the bulk material and it provides microstructure-based interface potentials in both normal and tangential directions with respect to finite element boundary separations. Voronoi tessellations have been utilized to generate different randomly shaped microstructure in studying the effect of polycrystalline grain morphology. Numerical simulations on crack propagation for various cohesive strengths are presented and it demonstrates the ability to capture the transition from the intergranular fracture to the transgranular fracture. A convergence test is conducted to study the possible size-effect of the method. Finally, a high-speed impact example is reported. The example demonstrates the advantages of multiscale cohesive method in simulating the spall fracture under high-speed impact loads.

1.
Bunge
,
H. J.
, 1992,
Texture Analysis in Material Science
,
Butterworths
,
London, UK
.
2.
Hosford
,
W. F.
, 1996, “
On the Basis of Yield Criteria
,”
Textures Microstruct.
0730-3300,
26
, pp.
479
493
.
3.
Kocks
,
U. F.
,
Tome
,
C.
, and
Wenk
,
H. R.
, 1997,
Texture and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Material Properties
,
Cambridge University Press
,
Cambridge, UK
.
4.
Zhou
,
Y.
,
Jonas
,
J. J.
,
Savoie
,
J.
,
Makinde
,
A.
, and
MacEwen
,
S. R.
, 1998, “
Effect of Texture on Earing in FCC Metals: Finite Element Simulations
,”
Int. J. Plast.
0749-6419,
14
, pp.
117
138
.
5.
Bhattacharyya
,
A.
,
El-Danaf
,
E.
,
Kalidindi
,
S. R.
, and
Doherty
,
R. D.
, 2001, “
Evolution of Grain-Scale Micro-Structure During Large Strain Simple Compression of Polycrystalline Aluminum With Quasi-Columnar Grains: OIM Measurements and Numerical Simulation
,”
Int. J. Plast.
0749-6419,
17
, pp.
861
883
.
6.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
, 2003, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part I: Theory and Numerical Implementation
,”
Mech. Mater.
0167-6636,
35
, pp.
333
364
.
7.
Bažant
,
Z.
, and
Oh
,
B.
, 1985, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
J. Eng. Mech.
0733-9399,
111
, pp.
559
582
.
8.
Addessio
,
F.
, and
Johnson
,
J.
, 1999, “
A Constitutive Model for the Dyamic Response of Brittle Materials
,” Alamos National Laboratory, Report No. LA-UR-89-2651.
9.
Curran
,
D.
,
Seaman
,
L.
,
Cooper
,
T.
, and
Shockey
,
D.
, 1990, “
Micromechanical Model for Comminution and Granular Flow of Brittle Material Under High Strain Rate Application to Penetration of Ceramic Targets
,”
Int. J. Impact Eng.
0734-743X,
13
,
53
83
.
10.
Espinosa
,
H. D.
, 1995, “
On the Dynamic Shear Resistance of Ceramic Composites and Its Dependence on Applied Multiaxial Deformation
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
3105
3128
.
11.
Clayton
,
J. D.
, 2005, “
Modeling Dynamic Plastic and Spall Fracture in High-Density Polycrystalline Alloys
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4613
4640
.
12.
Lawn
,
B.
, 1993,
Fracture of Brittle Solid
,
Cambridge University Press
,
Cambridge, UK
.
13.
Xu
,
X. -P.
, and
Needleman
,
A.
, 1994, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1397
1434
.
14.
Ortiz
,
M.
, and
Pandolfi
,
A.
, 1999, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
44
, pp.
1267
1282
.
15.
Wells
,
G. N.
, and
Sluys
,
L. J.
, 2001, “
A New Method for Modelling Cohesive Crack Using Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2667
2682
.
16.
Moës
,
N.
, and
Belytschko
,
T.
, 2002, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
813
833
.
17.
Liu
,
X.
,
Li
,
S.
, and
Sheng
,
N.
, 2008, “
A Cohesive Finite Element for Quasi-Continua
,”
Comput. Mech.
0178-7675,
42
, pp.
543
553
.
18.
Zeng
,
X. W.
, and
Li
,
S.
, 2010, “
A Multiscale Cohesive Zone Model and Simulations of Fracture
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
199
, pp.
547
556
.
19.
Israelachvili
,
J.
, 1991,
Intermolecular and Surface Forces
,
Academic
,
New York
.
20.
Hill
,
R.
, 1972, “
On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
131
147
.
21.
Ghosh
,
S.
, and
Yunshan
,
L.
, 1995, “
Voronoi Cell Finite Element Model Based on Micropolar Theory of Thermoelasticity for Heterogeneous Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
1361
1398
.
22.
Bolander
,
J.
, and
Saito
,
S.
, 1998, “
Fracture Analyses Using Spring Networks With Random Geometry
,”
Eng. Fract. Mech.
0013-7944,
61
, pp.
569
591
.
23.
Liu
,
Y.
,
Kageyama
,
Y.
, and
Murakami
,
S.
, 1998, “
Creep Fracture Modeling by Use of Continuum Damage Variable Based on Voronoi Simulation of Grain Boundary Cavity
,”
Int. J. Mech. Sci.
0020-7403,
40
, pp.
147
158
.
24.
Espinosa
,
H. D.
, and
Zavattieri
,
P. D.
, 2003, “
A Grain Level Model for the Study of Failure Initiation and Evolution in Polycrystalline Brittle Materials. Part II: Numerical Examples
,”
Mech. Mater.
0167-6636,
35
, pp.
365
394
.
25.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
.
26.
Belytschko
,
T.
, 1983, “
An Overview of Semidiscretization and Time Integration Procedure
,”
Computational Methods for Transient Analysis
,
T.
Belytschko
and
T. J. R.
Hughes
, eds.,
North-Holland
,
Amsterdam
, pp.
1
65
.
27.
Antoun
,
T.
,
Seaman
,
L.
,
Curran
,
D. R.
, and
Kanel
,
G. I.
, 2003,
Spall Fracture (Shock Wave and High Pressure Phenomena)
,
Springer
,
New York
.
28.
Hughes
,
T. J. R.
,
Talor
,
R.
,
Sackman
,
J.
,
Curnier
,
A.
, and
Kamoknukulchai
,
W.
, 1976, “
A Finite Element Method for a Class of Contact-Impact Problem
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
8
, pp.
249
276
.
You do not currently have access to this content.