Lopez-Pamies and Idiart (2010, “Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory,” J. Eng. Math., 68(1), pp. 57–83) have recently put forward a homogenization theory with the capability to generate exact results not only for the macroscopic response and stability but also for the evolution of the microstructure in fiber-reinforced hyperelastic solids subjected to finite deformations. In this paper, we make use of this new theory to construct exact, closed-form solutions for the change in size, shape, and orientation undergone by the underlying fibers in a model class of fiber-reinforced hyperelastic solids along arbitrary 3D loading conditions. Making use of these results, we then establish connections between the evolution of the microstructure and the overall stress-strain relation and macroscopic stability in fiber-reinforced elastomers. In particular, we show that the rotation of the fibers may lead to the softening of the overall stiffness of fiber-reinforced elastomers under certain loading conditions. Furthermore, we show that this geometric mechanism is intimately related to the development of long-wavelength instabilities. These findings are discussed in light of comparisons with recent results for related material systems.

1.
Honeker
,
C. C.
, and
Thomas
,
E. L.
, 1996, “
Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymers
,”
Chem. Mater.
0897-4756,
8
, pp.
1702
1714
.
2.
Honeker
,
C. C.
,
Thomas
,
E. L.
,
Albalak
,
R. J.
,
Hadjuk
,
D. A.
,
Gruner
,
S. M.
, and
Capel
,
M. C.
, 2000, “
Perpendicular Deformation of a Near–Single Crystal Triblock Copolymer With a Cylindrical Morphology. 1. Synchroton SAXS
,”
Macromolecules
0024-9297,
33
, pp.
9395
9406
.
3.
Finlay
,
H. M.
,
Whittaker
,
P.
, and
Canham
,
P. B.
, 1998, “
Collagen Organization in Branching Region of Human Brain Arteries
,”
Stroke
0039-2499,
29
, pp.
1595
1601
.
4.
Quapp
,
K. M.
, and
Weiss
,
J. A.
, 1998, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
757
763
.
5.
Lopez-Pamies
,
O.
, and
Idiart
,
M. I.
, 2010, “
Fiber-Reinforced Hyperelastic Solids: A Realizable Homogenization Constitutive Theory
,”
J. Eng. Math.
0022-0833,
68
(
1
), pp.
57
83
.
6.
Willis
,
J. R.
, 1981, “
Variational and Related Methods for the Overall Properties of Composites
,”
Adv. Appl. Mech.
0065-2156,
21
, pp.
1
78
.
7.
Willis
,
J. R.
, 1982, “
Elasticity Theory of Composites
,”
Mechanics of Solids, the Rodney Hill 60th Anniversary Volume
,
H. G.
Hopkins
, and
M. J.
Sewell
, eds.,
Pergamon
,
New York
, pp.
653
686
.
8.
Hill
,
R.
, 1972, “
On Constitutive Macrovariables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
131
147
.
9.
Chen
,
Y. -C.
,
Rajagopal
,
K. R.
, and
Wheeler
,
L.
, 2006, “
Homogenization and Global Responses of Inhomogeneous Spherical Nonlinear Elastic Shells
,”
J. Elast.
0374-3535,
82
, pp.
193
214
.
10.
Geymonat
,
G.
,
Müller
,
S.
, and
Triantafyllidis
,
N.
, 1993, “
Homogenization of Nonlinearly Elastic Materials, Microscopic Bifurcation and Macroscopic Loss of Rank-One Convexity
,”
Arch. Ration. Mech. Anal.
0003-9527,
122
, pp.
231
290
.
11.
Lopez-Pamies
,
O.
, 2006, “
On the Effective Behavior, Microstructure Evolution, and Macroscopic Stability of Elastomeric Composites
,” Ph.D. thesis, University of Pennsylvania.
12.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2006, “
On the Overall Behavior, Microstructure Evolution, and Macroscopic Stability in Reinforced Rubbers at Large Deformation: I—Theory
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
807
830
.
13.
deBotton
,
G.
,
Hariton
,
I.
, and
Socolsky
,
E. A.
, 2006, “
Neo-Hookean Fiber-Reinforced Composites in Finite Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
533
559
.
14.
Agoras
,
M.
,
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2009, “
A General Hyperelastic Model for Incompressible Fiber-Reinforced Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
268
286
.
15.
deBotton
,
G.
, and
Shmuel
,
G.
, “
A New Variational Estimate for the Effective Response of Hyperelastic Composites
,”
J. Mech. Phys. Solids
0022-5096,
58
, pp.
466
483
.
16.
Lopez-Pamies
,
O.
, 2010, “
An Exact Result for the Macroscopic Response of Particle-Reinforced Neo-Hookean Solids
,”
ASME J. Appl. Mech.
0021-8936,
77
, p.
021016
.
17.
Idiart
,
M. I.
, 2008, “
Modeling the Macroscopic Behavior of Two-Phase Nonlinear Composites by Infinite-Rank Laminates
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2599
2617
.
18.
deBotton
,
G.
, 2005, “
Transversely Isotropic Sequentially Laminated Composites in Finite Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1334
1361
.
19.
Polyanin
,
A. D.
,
Zaitsev
,
V. F.
, and
Moussiaux
,
A.
, 2002,
Handbook of First Order Partial Differential Equations
,
Taylor & Francis
,
London
.
20.
Benton
,
S. H.
, 1977,
The Hamilton-Jacobi Equation: A Global Approach. Mathematics in Science and Engineering 131
,
Academic Press
,
New York
.
21.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
,
New York
.
22.
Merodio
,
J.
, and
Ogden
,
R. W.
, 2003, “
Instabilities and Loss of Ellipticity in Fiber-Reinforced Nonlinearly Elastic Solids Under Plane Deformation
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
4707
4727
.
23.
Merodio
,
J.
, and
Ogden
,
R. W.
, 2005, “
Mechanical Response of Fiber-Reinforced Incompressible Non-Linearly Elastic Solids
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
213
227
.
24.
Horgan
,
C. O.
, and
Saccomandi
,
G.
, 2005, “
A New Constitutive Theory for Fiber-Reinforced Incompressible Nonlinearly Elastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1985
2015
.
25.
Agoras
,
M.
,
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2009, “
Onset of Macroscopic Instabilities in Fiber-Reinforced Elastomers at Finite Strain
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
1828
1850
.
26.
Del Piero
,
G.
, 1998, “
Representation Theorems for Hemitropic and Tranversely Isotropic Tensor Functions
,”
J. Elast.
0374-3535,
51
, pp.
43
71
.
27.
Spencer
,
A. J. M.
, 1972,
Deformations of Fibre-Reinforced Materials
,
Oxford University Press
,
Oxford
.
28.
Fleck
,
N.
, 1997, “
Compressive Failure of Fiber Composites
,”
Adv. Appl. Mech.
0065-2156,
33
, pp.
43
117
.
29.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2009, “
Microstructure Evolution in Hyperelastic Laminates and Implications for Overall Behavior and Macroscopic Stability
,”
Mech. Mater.
0167-6636,
41
, pp.
364
374
.
30.
Baek
,
S.
, and
Pence
,
T. P.
, 2009, “
Emergence and Disappearance of Load Induced Fiber Kinking Surfaces in Transversely Isotropic Hyperelastic Materials
,”
Z. Angew. Math. Phys.
0044-2275,
61
(
4
), pp.
745
772
.
31.
Destrade
,
M.
,
Saccomandi
,
G.
, and
Sgura
,
I.
, 2009, “
Inhomogeneous Shear of Orthotropic Incompressible Non-Linearly Elastic Solids: Singular Solutions and Biomechanical Interpretation
,”
Int. J. Eng. Sci.
0020-7225,
47
, pp.
1170
1181
.
32.
Lopez-Pamies
,
O.
,
Garcia
,
R.
,
Chabert
,
E.
,
Cavaillé
,
J. -Y.
, and
Ponte Castañeda
,
P.
, 2008, “
Multiscale Modeling of Oriented Thermoplastic Elastomers With Lamellar Morphology
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
3206
3223
.
33.
Wang
,
S.
, and
Mark
,
J. E.
, 1990, “
Generation of Glassy Ellipsoidal Particles Within an Elastomer by in Situ Polymerization, Elongation at an Elevated Temperature, and Finally Cooling Under Strain
,”
Macromolecules
0024-9297,
23
, pp.
4288
4291
.
34.
Lopez-Pamies
,
O.
, and
Ponte Castañeda
,
P.
, 2006, “
On the Overall Behavior, Microstructure Evolution, and Macroscopic Stability in Reinforced Rubbers at Large Deformations: II—Application to Cylindrical Fibers
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
831
863
.
35.
Nishikawa
,
E.
, and
Finkelmann
,
H.
, 1999, “
Smectic-A Liquid Single Crystal Elastomers—Strain Induced Break-Down of Smectic Layers
,”
Macromol. Chem. Phys.
1022-1352,
200
, pp.
312
322
.
You do not currently have access to this content.