The twinning-induced plasticity (TWIP) phenomenon is established as the most effective mechanism to enhance the formability of the advanced high-Mn (15–30 wt %) austenitic steels (known as TWIP steels). As the formability is very sensitive to the steel microstructure, the study of their hot deformation characteristics is highly desired. The aim of the present work is to investigate the effects of strain rate on the high temperature flow behavior, dynamic recrystallization (DRX) and the microstructural evolution of a grade of TWIP steels (with 29 wt % Mn) through single hit compression testing. The hot compression tests were carried out at two different temperatures (850°C and 1150°C) applying a range of strain rates (0.0010.1s1). The results indicated a greater deformation resistance at higher strain rates. The detected broad stress peaks at higher strain rates were related to the occurrence of DRX. The microstructural studies revealed that, in addition to DRX, a geometrical dynamic recrystallization occurred at 850°C. This results in a microstructure with finer equiaxed grains.

1.
Ding
,
H.
,
Tang
,
Z.-Y.
,
Li
,
W.
,
Wang
,
M.
, and
Song
,
D.
, 2006, “
Microstructures and Mechanical Properties of Fe-Mn-(Al, Si) TRIP/TWIP Steels
,”
J. Iron Steel Res. Int.
1006-706X,
13
(
6
), pp.
66
70
.
2.
Grassel
,
O.
,
Kruger
,
L.
,
Frommeyer
,
G.
, and
Meyer
,
L. W.
, 2000, “
High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development—Properties—Application
,”
Int. J. Plast.
0749-6419,
16
(
10-11
), pp.
1391
1409
.
3.
Vercammen
,
S.
,
Blanpain
,
B.
, and
De Cooman
,
B. C.
, 2004, “
Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning
,”
Acta Mater.
1359-6454,
52
, pp.
2005
2012
.
4.
Karjalainen
,
L.
, and
Perttula
,
J.
, 1996, “
Characteristics of Static and Metadynamic Recrystallization and Strain Accumulation in Hot-Deformed Austenite as Revealed by the Stress Relaxation Method
,”
ISIJ Int.
0915-1559,
36
, pp.
729
736
.
5.
Humphreys
,
F. J.
, and
Hatherly
,
M.
, 2003,
Recrystallization and Related Annealing Phenomena
,
Pergamon
,
Oxford, UK
.
6.
Bowden
,
J. W.
,
Samuel
,
F. H.
, and
Jonas
,
J. J.
, 1991, “
Effect of Interpass Time on Austenite Grain Refinement by Means of Dynamic Recrystallization of Austenite
,”
Metall. Trans. A
0360-2133,
22A
(
12
), pp.
2947
2957
.
7.
Jonas
,
J. J.
, 1997, “
Dynamic Recrystallization in Strip Mills Industrial Fact or Metallurgical Fiction
,”
International Conference on Thermomechanical Processing of Steels and Other Metals
, pp.
31
45
.
8.
H. J.
McQueen
, 2004, “
Development of Dynamic Recrystallization Theory
,”
Mater. Sci. Eng., A
0921-5093,
387–389
, pp.
203
208
.
9.
M. E.
Kassner
,
S. R.
Barrabes
, 2005, “
New Developments in Geometric Dynamic Recrystallization
,”
Mater. Sci. Eng., A
0921-5093,
410–411
, pp.
152
155
.
10.
Hamada
,
A. S.
,
Karjalainen
,
L. P.
, and
Somani
,
M. C.
, 2007, “
Constitutive Behavior of Two High Mn-Al TWIP Steels at Hot Rolling Temperatures
,”
Can. Metall. Q.
0008-4433,
46
, pp.
47
56
.
11.
Cabanas
,
N.
,
Akdut
,
N.
,
Penning
,
J.
, and
De Cooman
,
B. C.
, 2006, “
High-Temperature Deformation Properties of Austenitic Fe-Mn Alloys
,”
Metall. Mater. Trans. A
1073-5623,
37
(
11
), pp.
3305
3315
.
12.
Burrows
,
S. E.
,
Humphreys
,
F. J.
, and
White
,
S. H.
, 1979,
Strength of Metals and Alloys: Dynamic Recrystallization and Textural Development in Compression at Elevated Temperatures
,
Pergamon
,
Aachen, Germany
.
13.
Wang
,
X.
,
Brunger
,
E.
, and
Gottstein
,
G.
, 2002, “
The Role of Twinning During Dynamic Recrystallization in Alloy 800H
,”
Scr. Mater.
1359-6462,
46
, pp.
875
880
.
14.
Sitdikov
,
O.
,
Kaibyshev
,
R.
, and
Sakai
,
T.
, 2003, “
Dynamic Recrystallization Based on Twinning in Coarse-Grained Mg
,”
Mater. Sci. Forum
0255-5476,
419–422
, pp.
521
526
.
15.
Field
,
D. P.
, and
Bradford
,
L. T.
, 2007, “
The Role of Annealing Twins During Recrystallization of Cu
,”
Acta Mater.
1359-6454,
55
, pp.
4233
4241
.
16.
Jones
,
A. R.
, 1981, “
Annealing Twinning and the Nucleation of Recrystallization at Grain Boundaries
,”
J. Mater. Sci.
0022-2461,
16
, pp.
1374
1380
.
17.
Paul
,
H.
,
Driver
,
J. H.
,
Maurice
,
C.
, and
Piatkowski
,
A.
, 2007, “
Recrystallization Mechanisms of Low Stacking Fault Energy Metals as Characterized on Model Silver Single Crystals
,”
Acta Mater.
1359-6454,
55
, pp.
833
847
.
18.
Mishin
,
O. V.
, and
Gottstein
,
G.
, 1998, “
Grain Boundary Ensembles Due to Grain Growth in Copper With Strong Recrystallization Texture
,”
Mater. Sci. Eng., A
0921-5093,
249
, pp.
71
78
.
19.
Randle
,
V.
,
Rios
,
P. R.
, and
Hu
,
Y.
, 2008, “
Grain Growth and Twinning in Nickel
,”
Scr. Mater.
1359-6462,
58
, pp.
130
133
.
20.
Bailey
,
J. E.
, and
Hirsch
,
P. B.
, 1962, “
The Recrystallization Process in Some Polycrystalline Metals
,”
Proc. R. Soc. London, Ser. A
0950-1207,
267
, pp.
11
30
.
21.
Myshlyaev
,
M. M.
,
McQueen
,
H. J.
,
Mwembela
,
A.
, and
Konopleva
,
E.
, 2002, “
Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy
,”
Mater. Sci. Eng., A
0921-5093,
337
, pp.
121
133
.
22.
Momeni
,
A.
,
Abbasi
,
S. M.
, and
Shokuhfar
,
A.
, 2007, “
Hot Compression Behavior of As-Cast Precipitation Hardening Stainless Steel
,”
J. Iron Steel Res. Int.
1006-706X,
14
(
5
), pp.
66
70
.
23.
Barnett
,
M. R.
, 2001, “
Influence of Deformation Conditions and Texture on the High Temperature Flow Stress of Magnesium AZ31
,”
J. Light Met.
1471-5317,
1
, pp.
167
177
.
You do not currently have access to this content.