The objective of this review article is to provide a concise discussion of atomistic modeling efforts aimed at understanding the nanoscale behavior and the role of grain boundaries in plasticity of metallic polycrystalline materials. Atomistic simulations of grain boundary behavior during plastic deformation have focused mainly on three distinct configurations: (i) bicrystal models, (ii) columnar nanocrystalline models, and (iii) 3D nanocrystalline models. Bicrystal models facilitate the isolation of specific mechanisms that occur at the grain boundary during plastic deformation, whereas columnar and 3D nanocrystalline models allow for an evaluation of triple junctions and complex stress states characteristic of polycrystalline microstructures. Ultimately, both sets of calculations have merits and are necessary to determine the role of grain boundary structure on material properties. Future directions in grain boundary modeling are discussed, including studies focused on the role of grain boundary impurities and issues related to linking grain boundary mechanisms observed via atomistic simulation with continuum models of grain boundary plasticity.

1.
Randle
,
V.
, 1996,
The Role of the Coincidence Site Lattice in Grain Boundary Engineering
,
Institute of Materials
,
London
.
2.
Schuh
,
C. A.
,
Kumar
,
M.
, and
King
,
W. E.
, 2003, “
Analysis of Grain Boundary Networks and Their Evolution During Grain Boundary Engineering
,”
Acta Mater.
1359-6454,
51
(
3
), pp.
687
700
.
3.
Lim
,
L. C.
, 1987, “
Surface Intergranular Cracking in Large Strain Fatigue
,”
Acta Metall.
0001-6160,
35
(
7
), pp.
1653
1662
.
4.
Palumbo
,
G.
, and
Aust
,
K. T.
, 1990, “
Structure-Dependence of Intergranular Corrosion in High Purity Nickel
,”
Acta Metall. Mater.
0956-7151,
38
(
11
), pp.
2343
2352
.
5.
Pan
,
Y.
,
Adams
,
B. L.
,
Olson
,
T.
, and
Panayotou
,
N.
, 1996, “
Grain-Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X-750
,”
Acta Mater.
1359-6454,
44
(
12
), pp.
4685
4695
.
6.
Randle
,
V.
, 1993,
The Measurement of Grain Boundary Geometry
,
Institute of Physics
,
Bristol
.
7.
Watanabe
,
T.
, 1984, “
Approach to Grain Boundary Design for Strong and Ductile Polycrystals
,”
Res Mechanica: International Journal of Structural Mechanics and Materials Science
,
11
(
1
), pp.
47
84
.
8.
Watanabe
,
T.
, 1994, “
Impact of Grain Boundary Character Distribution on Fracture in Polycrystals
,”
Mater. Sci. Eng., A
0921-5093,
176
(
1–2
), pp.
39
49
.
9.
Watanabe
,
T.
,
Yamada
,
M.
, and
Karashima
,
S.
, 1991, “
Grain Boundary Strengthening Associated With Σ9 Near-Coincidence Boundary in ⟨1010⟩ Twist Zinc Bicrystals at High Temperatures
,”
Philos. Mag. A
0141-8610,
63
(
5
), pp.
1013
1022
.
10.
Watanabe
,
T.
, and
Tsurekawa
,
S.
, 1999, “
The Control of Brittleness and Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering
,”
Acta Mater.
1359-6454,
47
(
15–16
), pp.
4171
4185
.
11.
Gertsman
,
V. Y.
, and
Tangri
,
K.
, 1995, “
Computer Simulation Study of Grain Boundary and Triple Junction Distributions in Microstructures Formed by Multiple Twinning
,”
Acta Metall. Mater.
0956-7151,
43
(
6
), pp.
2317
2324
.
12.
Robach
,
J. S.
,
Robertson
,
I. M.
,
Wirth
,
B. D.
, and
Arsenlis
,
A.
, 2003, “
In-Situ Transmission Electron Microscopy Observations and Molecular Dynamics Simulations of Dislocation-Defect Interactions in Ion-Irradiated Copper
,”
Philos. Mag.
1478-6435,
83
(
8
), pp.
955
967
.
13.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
, 1990, “
T.E.M. In Situ Deformation Study of the Interaction of Lattice Dislocations With Grain Boundaries in Metals
,”
Philos. Mag. A
0141-8610,
62
(
1
), pp.
131
153
.
14.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
, 2003, “
Grain Boundary Effects and Void Porosity Evolution
,”
Mech. Mater.
0167-6636,
35
(
3–6
), pp.
537
552
.
15.
Ashmawi
,
W. M.
, and
Zikry
,
M. A.
, 2002, “
Prediction of Grain-Boundary Interfacial Mechanisms in Polycrystalline Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
(
1
), pp.
88
96
.
16.
Simkin
,
B. A.
,
Crimp
,
M. A.
, and
Bieler
,
T. R.
, 2003, “
A Factor to Predict Microcrack Nucleation at Γ-Γ Grain Boundaries in Tial
,”
Scr. Mater.
1359-6462,
49
(
2
), pp.
149
154
.
17.
Simkin
,
B. A.
,
Ng
,
B. C.
,
Bieler
,
T. R.
,
Crimp
,
M. A.
, and
Mason
,
D. E.
, 2003, “
Orientation Determination and Defect Analysis in the Near-Cubic Intermetallic Γ-Tial Using Sacp, Ecci, and Ebsd
,”
Intermetallics
0966-9795,
11
(
3
), pp.
215
223
.
18.
Bieler
,
T. R.
,
Fallahi
,
A.
,
Ng
,
B. C.
,
Kumar
,
D.
,
Crimp
,
M. A.
,
Simkin
,
B. A.
,
Zamiri
,
A.
,
Pourboghrat
,
F.
, and
Mason
,
D. E.
, 2005, “
Fracture Initiation/Propagation Parameters for Duplex Tial Grain Boundaries Based on Twinning, Slip, Crystal Orientation, and Boundary Misorientation
,”
Intermetallics
0966-9795,
13
(
9
), pp.
979
984
.
19.
Yamakov
,
V.
,
Saether
,
E.
,
Phillips
,
D. R.
, and
Glaessgen
,
E. H.
, 2006, “
Molecular-Dynamics Simulation-Based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum
,”
J. Mech. Phys. Solids
0022-5096,
54
(
9
), pp.
1899
1928
.
20.
Saether
,
E.
,
Yamakov
,
V.
, and
Glaessgen
,
E.
, 2007, “
A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods
,”
Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Reston, VA, Vol.
6
, pp.
5565
5579
.
21.
Hall
,
E. O.
, 1951, “
Deformation and Ageing of Mild Steel
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
64
(
381
), pp.
747
753
.
22.
Petch
,
N. J.
, 1953, “
Cleavage Strength of Polycrystals
,”
Iron and Steel
,
26
(
14
), pp.
601
602
.
23.
Dao
,
M.
,
Lu
,
L.
,
Asaro
,
R. J.
,
De Hosson
,
J. T. M.
, and
Ma
,
E.
, 2007, “
Toward a Quantitative Understanding of Mechanical Behavior of Nanocrystalline Metals
,”
Acta Mater.
1359-6454,
55
(
12
), pp.
4041
4053
.
24.
Howe
,
J. M.
, 1997,
Interfaces in Materials: Atomic Structure, Thermodynamic and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces
,
Wiley
,
New York
.
25.
Wolf
,
D.
, 1992, “
Atomic-Level Geometry of Crystalline Interfaces
,”
Materials Interfaces: Atomic-Level Structure and Properties
,
D.
Wolf
and
S.
Yip
, eds.,
Chapman and Hall
,
London
, pp.
1
57
.
26.
Sutton
,
A. P.
, and
Vitek
,
V.
, 1983, “
On the Structure of Tilt Grain Boundaries in Cubic Metals I. Symmetrical Tilt Boundaries
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
309
(
1506
), pp.
1
36
.
27.
Sutton
,
A. P.
, and
Vitek
,
V.
, 1983, “
On the Structure of Tilt Grain Boundaries in Cubic Metals II. Asymmetrical Tilt Boundaries
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
309
(
1506
), pp.
37
54
.
28.
Sutton
,
A. P.
, and
Vitek
,
V.
, 1983, “
On the Structure of Tilt Grain Boundaries in Cubic Metals. III. Generalizations of the Structural Study and Implications for the Properties of Grain Boundaries
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
309
(
1506
), pp.
55
68
.
29.
Wang
,
G. J.
,
Sutton
,
A. P.
, and
Vitek
,
V.
, 1984, “
A Computer Simulation Study of ⟨001⟩ and ⟨111⟩ Tilt Boundaries: The Multiplicity of Structures
,”
Acta Metall.
0001-6160,
32
(
7
), pp.
1093
1104
.
30.
Sutton
,
A. P.
, and
Balluffi
,
R. W.
, 1990, “
Rules for Combining Structural Units of Grain Boundaries
,”
Philos. Mag. Lett.
0950-0839,
61
(
3
), pp.
91
94
.
31.
Rittner
,
J. D.
, and
Seidman
,
D. N.
, 1996, “
Limitations of the Structural Unit Model
,”
Mater. Sci. Forum
0255-5476,
207-209
, pp.
333
336
.
32.
Rittner
,
J. D.
, and
Seidman
,
D. N.
, 1996, “
⟨110⟩ Symmetric Tilt Grain-Boundary Structures in Fcc Metals With Low Stacking-Fault Energies
,”
Phys. Rev. B
0163-1829,
54
(
10
), pp.
6999
7015
.
33.
Rittner
,
J. D.
,
Seidman
,
D. N.
, and
Merkle
,
K. L.
, 1996, “
Grain-Boundary Dissociation by the Emission of Stacking Faults
,”
Phys. Rev. B
0163-1829,
53
(
8
), pp.
R4241
R4244
.
34.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulations of Liquids
,
Clarendon
,
Oxford
.
35.
Haile
,
J. M.
, 1992,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley
,
New York
.
36.
Cleri
,
F.
,
Phillpot
,
S. R.
, and
Wolf
,
D.
, 1999, “
Atomistic Simulations of Integranular Fracture in Symmetric-Tilt Grain Boundaries
,”
Interface Sci.
0927-7056,
7
(
1
), pp.
45
55
.
37.
Farkas
,
D.
, 2000, “
Fracture Mechanisms of Symmetrical Tilt Grain Boundaries
,”
Philos. Mag. Lett.
0950-0839,
80
(
4
), pp.
229
237
.
38.
Chandra
,
N.
, 1999, “
Mechanics of Superplastic Deformations at Atomic Scale
,”
Mater. Sci. Forum
0255-5476,
304-306
, pp.
411
420
.
39.
Chandra
,
N.
, and
Dang
,
P.
, 1999, “
Atomistic Simulation of Grain Boundary Sliding and Migration
,”
J. Mater. Sci.
0022-2461,
34
(
4
), pp.
655
666
.
40.
Namilae
,
S.
,
Chandra
,
N.
, and
Nieh
,
T. G.
, 2002, “
Atomistic Simulation of Grain Boundary Sliding in Pure and Magnesium Doped Aluminum Bicrystals
,”
Scr. Mater.
1359-6462,
46
(
1
), pp.
49
54
.
41.
Kurtz
,
R. J.
, and
Hoagland
,
R. G.
, 1998, “
Effect of Grain Boundary Dislocations on the Sliding Resistance of Σ11 Grain Boundaries in Aluminum
,”
Scr. Mater.
1359-6462,
39
(
4–5
), pp.
653
659
.
42.
Hoagland
,
R. G.
, and
Kurtz
,
R. J.
, 2002, “
The Relation Between Grain-Boundary Structure and Sliding Resistance
,”
Philos. Mag. A
0141-8610,
82
(
6
), pp.
1073
1092
.
43.
Sansoz
,
F.
, and
Molinari
,
J. F.
, 2004, “
Incidence of Atom Shuffling on the Shear and Decohesion Behavior of a Symmetric Tilt Grain Boundary in Copper
,”
Scr. Mater.
1359-6462,
50
(
10
), pp.
1283
1288
.
44.
Sansoz
,
F.
, and
Molinari
,
J. F.
, 2005, “
Mechanical Behavior of Σ Tilt Grain Boundaries in Nanoscale Cu and Al: A Quasicontinuum Study
,”
Acta Mater.
1359-6454,
53
(
7
), pp.
1931
1944
.
45.
Qi
,
Y.
, and
Krajewski
,
P. E.
, 2007, “
Molecular Dynamics Simulations of Grain Boundary Sliding: The Effect of Stress and Boundary Misorientation
,”
Acta Mater.
1359-6454,
55
(
5
), pp.
1555
1563
.
46.
Cahn
,
J. W.
,
Mishin
,
Y.
, and
Suzuki
,
A.
, 2006, “
Coupling Grain Boundary Motion to Shear Deformation
,”
Acta Mater.
1359-6454,
54
(
19
), pp.
4953
4975
.
47.
Ivanov
,
V. A.
, and
Mishin
,
Y.
, 2008, “
Dynamics of Grain Boundary Motion Coupled to Shear Deformation: An Analytical Model and Its Verification by Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
78
(
6
), p.
064106
.
48.
Mishin
,
Y.
,
Suzuki
,
A.
,
Uberuaga
,
B. P.
, and
Voter
,
A. F.
, 2007, “
Stick-Slip Behavior of Grain Boundaries Studied by Accelerated Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
75
(
22
), p.
224101
.
49.
Suzuki
,
A.
, and
Mishin
,
Y.
, 2005, “
Atomic Mechanisms of Grain Boundary Motion
,”
Mater. Sci. Forum
0255-5476,
502
, pp.
157
162
.
50.
Spearot
,
D. E.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2005, “
Nucleation of Dislocations From [001] Bicrystal Interfaces in Aluminum
,”
Acta Mater.
1359-6454,
53
(
13
), pp.
3579
3589
.
51.
Spearot
,
D. E.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2007, “
Dislocation Nucleation From Bicrystal Interfaces With Dissociated Structure
,”
Int. J. Plast.
0749-6419,
23
(
1
), pp.
143
160
.
52.
Spearot
,
D. E.
,
Tschopp
,
M. A.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2007, “
Tensile Strength of ⟨100⟩ and ⟨110⟩ Tilt Bicrystal Copper Interfaces
,”
Acta Mater.
1359-6454,
55
(
2
), pp.
705
714
.
53.
Spearot
,
D. E.
, 2008, “
Evolution of the E Structural Unit During Uniaxial and Constrained Tensile Deformation
,”
Mech. Res. Commun.
0093-6413,
35
(
1–2
), pp.
81
88
.
54.
Tschopp
,
M. A.
, and
McDowell
,
D. L.
, 2008, “
Dislocation Nucleation in Σ3 Asymmetric Tilt Grain Boundaries
,”
Int. J. Plast.
0749-6419,
24
(
2
), pp.
191
217
.
55.
Tschopp
,
M. A.
,
Spearot
,
D. E.
, and
McDowell
,
D. L.
, 2008, “
Influence of Grain Boundary Structure on Dislocation Nucleation in Fcc Metals
,”
Dislocations in Solids
,
J. P.
Hirth
, ed.,
Elsevier
,
London
, Chap. 82.
56.
Tschopp
,
M. A.
,
Tucker
,
G. J.
, and
McDowell
,
D. L.
, 2008, “
Atomistic Simulations of Tension-Compression Asymmetry in Dislocation Nucleation for Copper Grain Boundaries
,”
Comput. Mater. Sci.
0927-0256,
44
(
2
), pp.
351
362
.
57.
Tschopp
,
M. A.
,
Tucker
,
G. J.
, and
McDowell
,
D. L.
, 2007, “
Structure and Free Volume of [1 1 0] Symmetric Tilt Grain Boundaries with the E Structural Unit
,”
Acta Mater.
1359-6454,
55
(
11
), pp.
3959
3969
.
58.
Yamakov
,
V.
,
Wolf
,
D.
,
Phillpot
,
S. R.
, and
Gleiter
,
H.
, 2002, “
Grain-Boundary Diffusion Creep in Nanocrystalline Palladium by Molecular-Dynamics Simulation
,”
Acta Mater.
1359-6454,
50
(
1
), pp.
61
73
.
59.
Yamakov
,
V.
,
Wolf
,
D.
,
Salazar
,
M.
,
Phillpot
,
S. R.
, and
Gleiter
,
H.
, 2001, “
Length-Scale Effects in the Nucleation of Extended Dislocations in Nanocrystalline Al by Molecular-Dynamics Simulation
,”
Acta Mater.
1359-6454,
49
(
14
), pp.
2713
2722
.
60.
Yamakov
,
V.
,
Wolf
,
D.
,
Phillpot
,
S. R.
,
Mukherjee
,
A. K.
, and
Gleiter
,
H.
, 2004, “
Deformation-Mechanism Map for Nanocrystalline Metals by Molecular-Dynamics Simulation
,”
Nature Mater.
1476-1122,
3
(
1
), pp.
43
47
.
61.
Yamakov
,
V.
,
Wolf
,
D.
,
Phillpot
,
S. R.
, and
Gleiter
,
H.
, 2002, “
Deformation Twinning in Nanocrystalline Al by Molecular-Dynamics Simulation
,”
Acta Mater.
1359-6454,
50
(
20
), pp.
5005
5020
.
62.
Yamakov
,
V.
,
Wolf
,
D.
,
Phillpot
,
S. R.
, and
Gleiter
,
H.
, 2003, “
Dislocation-Dislocation and Dislocation-Twin Reactions in Nanocrystalline Al by Molecular Dynamics Simulation
,”
Acta Mater.
1359-6454,
51
(
14
), pp.
4135
4147
.
63.
Froseth
,
A. G.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2004, “
Dislocations Emitted From Nanocrystalline Grain Boundaries: Nucleation and Splitting Distance
,”
Acta Mater.
1359-6454,
52
(
20
), pp.
5863
5870
.
64.
Van Swygenhoven
,
H.
,
Derlet
,
P. M.
, and
Froseth
,
A. G.
, 2004, “
Stacking Fault Energies and Slip in Nanocrystalline Metals
,”
Nature Mater.
1476-1122,
3
(
6
), pp.
399
403
.
65.
Frederiksen
,
S. L.
,
Jacobsen
,
K. W.
, and
Schiotz
,
J.
, 2004, “
Simulations of Intergranular Fracture in Nanocrystalline Molybdenum
,”
Acta Mater.
1359-6454,
52
(
17
), pp.
5019
5029
.
66.
Farkas
,
D.
,
Van Petegem
,
S.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2005, “
Dislocation Activity and Nano-Void Formation Near Crack Tips in Nanocrystalline Ni
,”
Acta Mater.
1359-6454,
53
(
11
), pp.
3115
3123
.
67.
Van Swygenhoven
,
H.
, and
Caro
,
A.
, 1997, “
Plastic Behavior of Nanophase Ni: A Molecular Dynamics Computer Simulation
,”
Appl. Phys. Lett.
0003-6951,
71
(
12
), pp.
1652
1654
.
68.
Van Swygenhoven
,
H.
, and
Caro
,
A.
, 1998, “
Plastic Behavior of Nanophase Metals Studied by Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
58
(
17
), pp.
11246
11251
.
69.
Van Swygenhoven
,
H.
,
Spaczer
,
M.
, and
Caro
,
A.
, 1999, “
Microscopic Description of Plasticity in Computer Generated Metallic Nanophase Samples: A Comparison between Cu and Ni
,”
Acta Mater.
1359-6454,
47
(
10
), pp.
3117
3126
.
70.
Van Swygenhoven
,
H.
,
Spaczer
,
M.
,
Caro
,
A.
, and
Farkas
,
D.
, 1999, “
Competing Plastic Deformation Mechanisms in Nanophase Metals
,”
Phys. Rev. B
0163-1829,
60
(
1
), pp.
22
25
.
71.
Van Swygenhoven
,
H.
,
Spaczer
,
M.
,
Farkas
,
D.
, and
Caro
,
A.
, 1999, “
The Role of Grain Size and the Presence of Low and High Angle Grain Boundaries in the Deformation Mechanism of Nanophase Ni: A Molecular Dynamics Computer Simulation
,”
Nanostruct. Mater.
0965-9773,
12
, pp.
323
326
.
72.
Van Swygenhoven
,
H.
,
Farkas
,
D.
, and
Caro
,
A.
, 2000, “
Grain-Boundary Structures in Polycrystalline Metals at the Nanoscale
,”
Phys. Rev. B
0163-1829,
62
(
2
), pp.
831
838
.
73.
Van Swygenhoven
,
H.
,
Caro
,
A.
, and
Farkas
,
D.
, 2001, “
A Molecular Dynamics Study of Polycrystalline Fcc Metals at the Nanoscale: Grain Boundary Structure and Its Influence on Plastic Deformation
,”
Mater. Sci. Eng., A
0921-5093,
309-310
, pp.
440
444
.
74.
Van Swygenhoven
,
H.
,
Derlet
,
P. M.
, and
Hasnaoui
,
A.
, 2002, “
Atomic Mechanism for Dislocation Emission From Nanosized Grain Boundaries
,”
Phys. Rev. B
0163-1829,
66
(
2
), p.
024101
.
75.
Van Swygenhoven
,
H.
, 2002, “
Grain Boundaries and Dislocations
,”
Science
0036-8075,
296
(
5565
), pp.
66
67
.
76.
Derlet
,
P. M.
,
Van Swygenhoven
,
H.
, and
Hasnaoui
,
A.
, 2003, “
Atomistic Simulation of Dislocation Emission in Nanosized Grain Boundaries
,”
Philos. Mag.
1478-6435,
83
(
31–34
), pp.
3569
3575
.
77.
Van Swygenhoven
,
H.
,
Derlet
,
P. M.
, and
Froseth
,
A. G.
, 2006, “
Nucleation and Propagation of Dislocations in Nanocrystalline Fcc Metals
,”
Acta Mater.
1359-6454,
54
(
7
), pp.
1975
1983
.
78.
Van Swygenhoven
,
H.
, and
Weertman
,
J. R.
, 2006, “
Deformation in Nanocrystalline Metals
,”
Mater. Today
1369-7021,
9
(
5
), pp.
24
31
.
79.
Caturla
,
M. -J.
,
Nieh
,
T. G.
, and
Stolken
,
J. S.
, 2004, “
Differences in Deformation Processes in Nanocrystalline Nickel With Low- and High-Angle Boundaries From Atomistic Simulations
,”
Appl. Phys. Lett.
0003-6951,
84
(
4
), pp.
598
600
.
80.
Zheng
,
C.
, and
Zhang
,
Y. W.
, 2006, “
Atomistic Simulations of Mechanical Deformation of High-Angle and Low-Angle Nanocrystalline Copper at Room Temperature
,”
Mater. Sci. Eng., A
0921-5093,
423
(
1–2
), pp.
97
101
.
81.
Froseth
,
A.
,
Van Swygenhoven
,
H.
, and
Derlet
,
P. M.
, 2004, “
The Influence of Twins on the Mechanical Properties of Nc-Al
,”
Acta Mater.
1359-6454,
52
(
8
), pp.
2259
2268
.
82.
Froseth
,
A. G.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2004, “
Grown-In Twin Boundaries Affecting Deformation Mechanisms in Nc-Metals
,”
Appl. Phys. Lett.
0003-6951,
85
(
24
), pp.
5863
5865
.
83.
Froseth
,
A. G.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2006, “
Vicinal Twin Boundaries Providing Dislocation Sources in Nanocrystalline Al
,”
Scr. Mater.
1359-6462,
54
(
3
), pp.
477
481
.
84.
Farkas
,
D.
,
Froseth
,
A.
, and
Van Swygenhoven
,
H.
, 2006, “
Grain Boundary Migration During Room Temperature Deformation of Nanocrystalline Ni
,”
Scr. Mater.
1359-6462,
55
(
8
), pp.
695
698
.
85.
Xiao
,
S.
, and
Hu
,
W.
, 2006, “
Molecular Dynamics Simulations of Grain Growth in Nanocrystalline Ag
,”
J. Cryst. Growth
0022-0248,
286
(
2
), pp.
512
517
.
86.
Schiotz
,
J.
,
Di Tolla
,
F. D.
, and
Jacobsen
,
K. W.
, 1998, “
Softening of Nanocrystalline Metals at Very Small Grain Sizes
,”
Nature (London)
0028-0836,
391
(
6667
), pp.
561
563
.
87.
Schiotz
,
J.
,
Vegge
,
T.
,
Di Tolla
,
F. D.
, and
Jacobsen
,
K. W.
, 1999, “
Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals
,”
Phys. Rev. B
0163-1829,
60
(
17
), pp.
11971
11983
.
88.
Schiotz
,
J.
, 2004, “
Atomic-Scale Modeling of Plastic Deformation of Nanocrystalline Copper
,”
Scr. Mater.
1359-6462,
51
(
8
), pp.
837
841
.
89.
Kadau
,
K.
,
Germann
,
T. C.
,
Lomdahl
,
P. S.
,
Holian
,
B. L.
,
Kadau
,
D.
,
Entel
,
P.
,
Kreth
,
M.
,
Westerhoff
,
F.
, and
Wolf
,
D. E.
, 2004, “
Molecular-Dynamics Study of Mechanical Deformation in Nano-Crystalline Aluminum
,”
Metall. Mater. Trans. A
1073-5623,
35
, pp.
2719
2722
.
90.
Rajgarhia
,
R.
,
Spearot
,
D. E.
, and
Saxena
,
A.
, 2008, “
Microstructural Stability and Plastic Deformation Behavior of Nanocrysatlline Copper-Antimony Alloys
,”
Poster Presentation at MRS Fall Meeting
, Boston, MA.
91.
Capolungo
,
L.
,
Spearot
,
D. E.
,
Cherkaoui
,
M.
,
McDowell
,
D. L.
,
Qu
,
J.
, and
Jacob
,
K. I.
, 2007, “
Dislocation Nucleation From Bicrystal Interface and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
2300
2327
.
92.
Gross
,
D.
, and
Li
,
M.
, 2002, “
Constructing Microstructures of Poly- and Nanocrystalline Materials for Numerical Modeling and Simulation
,”
Appl. Phys. Lett.
0003-6951,
80
(
5
), pp.
746
748
.
93.
de Koning
,
M.
,
Kurtz
,
R. J.
,
Bulatov
,
V. V.
,
Henager
,
C. H.
,
Hoagland
,
R. G.
,
Cai
,
W.
, and
Nomura
,
M.
, 2003, “
Modeling of Dislocation-Grain Boundary Interactions in Fcc Metals
,”
J. Nucl. Mater.
0022-3115,
323
, pp.
281
289
.
94.
de Koning
,
M.
,
Miller
,
R.
,
Bulatov
,
V. V.
, and
Abraham
,
F. F.
, 2002, “
Modelling Grain-Boundary Resistance in Intergranular Dislocation Slip Transmission
,”
Philos. Mag. A
0141-8610,
82
(
13
), pp.
2511
2527
.
95.
Jin
,
Z. H.
,
Gumbsch
,
P.
,
Ma
,
E.
,
Albe
,
K.
,
Lu
,
K.
,
Hahn
,
H.
, and
Gleiter
,
H.
, 2006, “
The Interaction Mechanism of Screw Dislocations With Coherent Twin Boundaries in Different Face-Centered Cubic Metals
,”
Scr. Mater.
1359-6462,
54
(
6
), pp.
1163
1168
.
96.
Jin
,
Z. H.
,
Gumbsch
,
P.
,
Albe
,
K.
,
Ma
,
E.
,
Lu
,
K.
,
Gleiter
,
H.
, and
Hahn
,
H.
, 2008, “
Interactions Between Non-Screw Lattice Dislocations and Coherent Twin Boundaries in Face-Centered Cubic Metals
,”
Acta Mater.
1359-6454,
56
(
5
), pp.
1126
1135
.
97.
Hasnaoui
,
A.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2004, “
Interaction Between Dislocations and Grain Boundaries Under an Indenter—a Molecular Dynamics Simulation
,”
Acta Mater.
1359-6454,
52
(
8
), pp.
2251
2258
.
98.
Hoagland
,
R. G.
,
Mitchell
,
T. E.
,
Hirth
,
J. P.
, and
Kung
,
H.
, 2002, “
On the Strengthening Effects of Interfaces in Multilayer Fcc Metallic Composites
,”
Philos. Mag. A
0141-8610,
82
(
4
), pp.
643
664
.
99.
Hoagland
,
R. G.
,
Kurtz
,
R. J.
, and
Henager
,
C. H.
, Jr.
, 2004, “
Slip Resistance of Interfaces and the Strength of Metallic Multilayer Composites
,”
Scr. Mater.
1359-6462,
50
(
6
), pp.
775
779
.
100.
Henager
,
C. H.
, Jr.
,
Kurtz
,
R. J.
, and
Hoagland
,
R. G.
, 2004, “
Interactions of Dislocations With Disconnections in Fcc Metallic Nanolayered Materials
,”
Philos. Mag.
1478-6435,
84
(
22
), pp.
2277
2303
.
101.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
, 1989, “
Prediction of Slip Transfer Mechanisms Across Grain Boundaries
,”
Scr. Metall.
0036-9748,
23
(
5
), pp.
799
803
.
102.
Clark
,
W. A. T.
,
Wagoner
,
R. H.
,
Shen
,
Z. Y.
,
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
, 1992, “
On the Criteria for Slip Transmission Across Interfaces in Polycrystals
,”
Scr. Metall. Mater.
0956-716X,
26
(
2
), pp.
203
206
.
103.
Shilkrot
,
L. E.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2002, “
A Coupled Atomistic/Continuum Model of Defects in Solids
,”
J. Mech. Phys. Solids
0022-5096,
50
(
10
), pp.
2085
2106
.
104.
Shilkrot
,
L. E.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
, 2004, “
Multiscale Plasticity Modeling: Coupled Atomistics and Discrete Dislocation Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
52
(
4
), pp.
755
787
.
105.
Dewald
,
M. P.
, and
Curtin
,
W. A.
, 2007, “
Multiscale Modelling of Dislocation/Grain-Boundary Interactions: I. Edge Dislocations Impinging on Σ11 (1 1 3) Tilt Boundary in Al
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
(
1
), pp.
S193
S215
.
106.
Ma
,
A.
,
Roters
,
F.
, and
Raabe
,
D.
, 2006, “
On the Consideration of Interactions Between Dislocations and Grain Boundaries in Crystal Plasticity Finite Element Modeling—Theory, Experiments, and Simulations
,”
Acta Mater.
1359-6454,
54
(
8
), pp.
2181
2194
.
107.
Roters
,
F.
,
Ma
,
A.
, and
Raabe
,
D.
, 2006, “
A Dislocation Density Based Constitutive Model for Crystal Plasticity FEM Including Geometrically Necessary Dislocations
,”
Acta Mater.
1359-6454,
54
(
8
), pp.
2169
2179
.
108.
Warner
,
D. H.
,
Sansoz
,
F.
, and
Molinari
,
J. F.
, 2006, “
Atomistic Based Continuum Investigation of Plastic Deformation in Nanocrystalline Copper
,”
Int. J. Plast.
0749-6419,
22
(
4
), pp.
754
774
.
109.
Jang
,
S.
,
Purohit
,
Y.
,
Irving
,
D.
,
Padgett
,
C.
,
Brenner
,
D.
, and
Scattergood
,
R. O.
, 2008, “
Molecular Dynamics Simulations of Deformation in Nanocrystalline Al–Pb Alloys
,”
Mater. Sci. Eng., A
0921-5093,
493
(
1–2
), pp.
53
57
.
110.
Jang
,
S.
,
Purohit
,
Y.
,
Irving
,
D. L.
,
Padgett
,
C.
,
Brenner
,
D.
, and
Scattergood
,
R. O.
, 2008, “
Influence of Pb Segregation on the Deformation of Nanocrystalline Al: Insights From Molecular Simulations
,”
Acta Mater.
1359-6454,
56
(
17
), pp.
4750
4761
.
111.
Elsener
,
A.
,
Politano
,
O.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2009, “
Variable-Charge Method Applied to Study Coupled Grain Boundary Migration in the Presence of Oxygen
,”
Acta Mater.
1359-6454,
57
(
6
), pp.
1988
2001
.
112.
Millett
,
P. C.
,
Selvam
,
R. P.
, and
Saxena
,
A.
, 2006, “
Molecular Dynamics Simulations of Grain Size Stabilization in Nanocrystalline Materials by Addition of Dopants
,”
Acta Mater.
1359-6454,
54
(
2
), pp.
297
303
.
113.
Millett
,
P. C.
,
Selvam
,
R. P.
, and
Saxena
,
A.
, 2007, “
Stabilizing Nanocrystalline Materials With Dopants
,”
Acta Mater.
1359-6454,
55
(
7
), pp.
2329
2336
.
114.
Rajgarhia
,
R.
,
Spearot
,
D. E.
, and
Saxena
,
A.
,
J. Mater. Res.
0884-2914, submitted.
115.
Ungar
,
T.
, 2006, “
Subgrain Size-Distributions, Dislocation Structures, Stacking- and Twin Faults and Vacancy Concentrations in SPD Materials Determined by X-Ray Line Profile Analysis
,”
Mater. Sci. Forum
0255-5476,
503-504
, pp.
133
140
.
116.
Ungar
,
T.
,
Schafler
,
E.
,
Hanak
,
P.
,
Bernstorff
,
S.
, and
Zehetbauer
,
M.
, 2005, “
Vacancy Concentrations Determined From the Diffuse Background Scattering of X-Rays in Plastically Deformed Copper
,”
Z. Metallkd.
0044-3093,
96
(
6
), pp.
578
583
.
117.
Ungar
,
T.
,
Schafler
,
E.
,
Hanak
,
P.
,
Bernstorff
,
S.
, and
Zehetbauer
,
M.
, 2007, “
Vacancy Production During Plastic Deformation in Copper Determined by In Situ X-Ray Diffraction
,”
Mater. Sci. Eng., A
0921-5093,
462
(
1–2
), pp.
398
401
.
118.
Zehetbauer
,
M.
,
Schafler
,
E.
, and
Ungar
,
T.
, 2005, “
Vacancies in Plastically Deformed Copper
,”
Z. Metallkd.
0044-3093,
96
(
9
), pp.
1044
1048
.
119.
Derlet
,
P. M.
,
Gumbsch
,
P.
,
Hoagland
,
R.
,
Li
,
J.
,
McDowell
,
D. L.
,
Van Swygenhoven
,
H.
, and
Wang
,
J.
, 2009, “
Atomistic Simulations of Dislocation in Confined Volumes
,”
MRS Bull.
0883-7694,
34
(
3
), pp.
184
189
.
You do not currently have access to this content.