The prediction of fatigue life for metallic components subjected to complex multiaxial stress states is a challenging aspect in design. Equivalent-stress approaches often work reasonably well for uniaxial and proportional load paths; however, the analysis of nonproportional load paths brings forth complexities, such as the identification of cycles, definition of mean stresses, and phase shifts, that the equivalent-stress approaches have difficulties in modeling. Shear-stress based critical-plane approaches, which consider the orientation of the plane on which the crack is assumed to nucleate, have shown better success in correlating experimental results for a broader variety of load paths than equivalent-stress models. However, while the interpretation of the ancillary stress terms in a critical-plane parameter is generally straightforward within proportional loadings, there is often ambiguity in the definition when the loading is nonproportional. In this study, a thorough examination of the variables responsible for crack nucleation is presented in the context of the critical-plane methodology. Uniaxial and multiaxial fatigue data from Ti–6Al–4V and three other alloys, namely, Rene’104, Rene’88DT, and Direct Age 718, are used as the basis for the evaluation. The experimental fatigue data include axial, torsional, proportional, and a variety of nonproportional tension/torsion load paths. Specific attention is given to the effects of torsional mean stresses, the definition of the critical plane, and the interpretation of normal stress terms on the critical plane within nonproportional load paths. A new modification to a critical-plane parameter is presented, which provides a good correlation of experimental fatigue data.

1.
Garud
,
Y. S.
, 1981, “
Multiaxial Fatigue: A Survey of the State of the Art
,”
J. Test. Eval.
,
9
, pp.
165
178
. 0090-3973
2.
You
,
B. R.
, and
Lee
,
S. B.
, 1996, “
A Critical Review on Multiaxial Fatigue Assessments of Metals
,”
Int. J. Fatigue
0142-1123,
18
, pp.
235
244
.
3.
Papadopoulos
,
I. V.
,
Davoli
,
P.
,
Gorla
,
C.
,
Filippini
,
M.
, and
Bernasconi
,
A.
, 1997, “
A Comparative Study of Multiaxial High-Cycle Fatigue Criteria for Metals
,”
Int. J. Fatigue
0142-1123,
19
, pp.
219
235
.
4.
Wang
,
Y. Y.
, and
Yao
,
W. X.
, 2004, “
Evaluation and Comparison of Several Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
26
, pp.
17
25
.
5.
Park
,
J.
, and
Nelson
,
D.
, 2000, “
Evaluation of an Energy-Based Approach and a Critical Plane Approach for Predicting Constant Amplitude Multiaxial Fatigue Life
,”
Int. J. Fatigue
0142-1123,
22
, pp.
23
39
.
6.
Socie
,
D. F.
, and
Marquis
,
G. B.
, 2000,
Multiaxial Fatigue
,
Society of Automotive Engineers
,
Warrendale
.
7.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
, 2001,
Metal Fatigue in Engineering
,
Wiley
,
New York
.
8.
Kallmeyer
,
A. R.
,
Krgo
,
A.
, and
Kurath
,
P.
, 2002, “
Evaluation of Multiaxial Fatigue Life Prediction Methodologies for Ti-6Al-4V
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
, pp.
229
237
.
9.
Zheng
,
X.
, 2001, “
On Some Basic Problems of Fatigue Research in Engineering
,”
Int. J. Fatigue
0142-1123,
23
, pp.
751
766
.
10.
Glinka
,
G.
,
Wang
,
G.
, and
Plumtree
,
A.
, 1995, “
Mean Stress Effects in Multiaxial Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
, pp.
755
764
.
11.
Naik
,
R. A.
,
Lanning
,
D. B.
,
Nicholas
,
T.
, and
Kallmeyer
,
A. R.
, 2005, “
A Critical Plane Gradient Approach for the Prediction of Notched HCF Life
,”
Int. J. Fatigue
0142-1123,
27
, pp.
481
492
.
12.
Socie
,
D.
, 1993, “
Critical Plane Approaches for Multiaxial Fatigue Damage Assessment
,”
Advances in Multiaxial Fatigue, ASTM STP, 1191
,
ASTM
,
Philadelphia
, pp.
7
36
.
13.
Gallagher
,
J. P.
,
Van Stone
,
R. H.
,
deLaneuville
,
R. E.
,
Gravett
,
P.
, and
Bellows
,
R. S.
, 2001, “
Improved High Cycle Fatigue Life Prediction
,”
University of Dayton Research Institute
, Report No. AFRL-ML-WP-TR-2001-4159.
14.
Mourer
,
D. P.
,
Huron
,
E. S.
,
Bain
,
K. R.
,
Montero
,
E. E.
,
Reynolds
,
P. L.
, and
Schirra
,
J. J.
, 2003, “
Superalloy Optimized for High-Temperature Performance in High-Pressure Turbine Disks
,” U.S. Patent 6,521,175.
15.
Krueger
,
D. D.
,
Kissinger
,
R. D.
, and
Menzies
,
R. G.
, 1992, “
Development and Introduction of a Damage Tolerant High Temperature Nickel-Base Disk Alloy, Rene’88DT
,”
Superalloys 1992
,
The Minerals, Metals, and Materials Society
,
Warrendale, PA
, pp.
277
286
.
16.
Krueger
,
D. D.
, 1989, “
The Development of Direct Age 718 for Gas Turbine Engine Disk Applications
,”
Superalloy 718: Metallurgy and Applications
,
The Minerals, Metals, and Materials Society
,
Warrendale, PA
, pp.
279
296
.
17.
Findley
,
W. N.
, 1954, “
Experiments in Fatigue Under Ranges of Stress in Torsion and Axial Load From Tension to Extreme Compression
,”
Proceedings of the American Society for Testing and Materials
,
Chicago, IL
, June 13–18, Vol.
54
, pp.
836
852
.
18.
Goodin
,
E.
,
Kallmeyer
,
A.
, and
Kurath
,
P.
, 2002, “
Multiaxial Fatigue Evaluation of Ti-6Al-4V Under Simulated Mission Histories
,”
Proceedings of the Seventh National Turbine Engine High Cycle Fatigue Conference
,
FL
, May 14–17.
19.
Davoli
,
P.
,
Bernasconi
,
A.
,
Filippini
,
M.
,
Foletti
,
S.
, and
Papadopoulos
,
I. V.
, 2003, “
Independence of the Torsional Fatigue Limit Upon a Mean Shear Stress
,”
Int. J. Fatigue
0142-1123,
25
, pp.
471
480
.
20.
Sines
,
G.
, and
Ohgi
,
G.
, 1981, “
Fatigue Criteria Under Combined Stresses or Strains
,”
ASME J. Eng. Mater. Technol.
,
103
, pp.
82
90
. 0094-4289
21.
Sines
,
G.
, 1955, “
Failure of Materials Under Combined Repeated Stresses With Superimposed Static Stresses
,”
University of California
, Report No. NACA TN 3495.
22.
ASTM Standard E1049, 1998, “
Cycle Counting for Fatigue Analysis
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
American Society for Testing and Materials
,
PA
.
You do not currently have access to this content.