The mechanical threshold stress (MTS) model is not commonly used in industrial applications due to its complexity. The Zener–Hollomon parameter was utilized to develop a simplified and compact formulation similar to the MTS model. The predictions of the proposed formulation are compared to the results obtained by the original MTS model and experimental data. The flow stresses of three cold-rolled steels frequently used in automotive industries were analyzed for both formulations over a wide range of strain rates .
Issue Section:
Technical Papers
1.
Klepaczko
, J. R.
, 1975, “Thermally Activated Flow and Strain Rate History Effects for Some Polycrystalline FCC Metals
,” Mater. Sci. Eng.
0025-5416, 18
, pp. 121
–135
.2.
Estrin
, Y.
, and Mecking
, H.
, 1984, “A Unified Phenomenological Description of Work-Hardening and Creep Based on One-Parameter Models
,” Acta Metall.
0001-6160, 32
, pp. 57
–70
.3.
Zerilli
, F. J.
, and Armstrong
, R. W.
, 1986, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,” J. Appl. Phys.
0021-8979, 61
(5
), pp. 1816
–1825
.4.
Estrin
, Y.
, Tóth
, L. S.
, Molinari
, A.
, and Bréchet
, Y.
, 1998, “A Dislocation-Based Model for all Hardening Stages in Large Strain Deformation
,” Acta Mater.
1359-6454, 46
(15
), pp. 5509
–5522
.5.
Liang
, R.
, and Khan
, A. S.
, 1999, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperature
,” Int. J. Plast.
0749-6419, 15
, pp. 963
–980
.6.
Follansbee
, P. S.
, and Kocks
, U. F.
, 1988, “A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,” Acta Metall.
0001-6160, 36
, pp. 81
–93
.7.
Varshni
, Y. P.
, 1970, “Temperature Dependence of the Elastic Constants
,” Phys. Rev. B
0556-2805, 2
, pp. 3952
–3958
.8.
Gilman
, J. J.
, 1968, “Dislocation Dynamics and Response of Materials to Impact
,” Appl. Mech. Rev.
0003-6900, 21
, pp. 767
–783
.9.
Kocks
, U. F.
, Argon
, A. S.
, and Ashby
, M. F.
, 1975, “Thermodynamics and Kinematics of Slip
,” Prog. Mater. Sci.
0079-6425, 19
, pp. 230
–265
.10.
Goto
, D. M.
, Bingert
, J. F.
, Chen
, S. R.
, Gray
, III, G. T.
, and Garrett
, R. K.
, 2000, “The Mechanical Threshold Stress Constitutive-Strength Model Description of HY-100 Steel
,” Metall. Mater. Trans. A
1073-5623, 31
, pp. 1985
–1996
.11.
Kocks
, U. F.
, 1976, “Laws for Strain-Hardening and Low-Temperature Creep
,” ASME J. Eng. Mater. Technol.
0094-4289, 98
, pp. 76
–85
.12.
Canova
, G. R.
, and Kubin
, L. P.
, 1991, “Continuum Models and Discrete Systems
,” in Maugin
, G. A.
editor, Longman Scientific and Technical
, pp. 93
–101
.13.
Blewitt
, T. H.
, Coltman
, R. R.
, and Redman
, J. K.
, 1955, Dislocations and Mechanical Properties of Crystals
, Wiley
, New York.14.
Mecking
, H.
, and Estrin
, Y.
, 1987, “Constitutive Relations and Their Physical Basis
,” S. J.
Andersen
, J. B.
Bilde-Sorensen
, N.
Hansen
, T.
Leffers
, H.
Lilholt
, O. B.
Pedersen
, and B.
Ralph
, eds., Riso National Laboratory
, Roskilde
, Denmark, pp. 123
–145
.15.
Zener
, C.
, and Hollomon
, J. H.
, 1944, “Effect of Strain Rate Upon the Plastic Flow of Steel
,” J. Appl. Phys.
0021-8979, 15
, pp. 22
–32
.16.
Cambell
, J. D.
, 1968, “Plastic Instability in Rate-Dependent Materials
,” J. Mech. Phys. Solids
0022-5096, 15
, pp. 359
–368
.17.
Klepaczko
, J. R.
, 1968, “Generalized Conditions for Stability in Tension Tests
,” Int. J. Mech. Sci.
0020-7403, 10
, pp. 297
–313
.18.
Seeger
, A.
, 1957, Dislocations and Mechanical Properties of Crystals
, Wiley
, New York.19.
Conrad
, H.
, 1964, “Thermally Activated Deformation of Metals
,” J. Met.
0148-6608, 16
, pp. 582
–588
.20.
Rusinek
, A.
, and Zaera
, R.
, 2007, “Finite Element Simulation of Steel Ring Fragmentation Under Radial Expansion
,” Int. J. Impact Eng.
0734-743X, 34
, pp. 799
–822
.21.
Uenishi
, A.
, and Teodosiu
, C.
, 2004, “Constitutive Modeling of the High Strain Rate Behavior of Interstitial-Free Steel
,” Int. J. Plast.
0749-6419, 20
, pp. 915
–936
.22.
Klepaczko
, J. R.
, 1987, “A Practical Stress-Strain-Strain Rate-Temperature Constitutive Relation of the Power Form
,” J. Mech. Work. Technol.
0378-3804, 15
, pp. 143
–165
.23.
Klepaczko
, J. R.
, 1988, “A General Approach to Rate Sensitivity and Constitutive Modeling of FCC and BCC Metals
,” Impact: Effects of Fast Transient Loadings
, Balkema
, Rotterdam, pp. 3
–35
.24.
Tanne
, A. B.
, McGinty
, R. D.
, and McDowell
, D. L.
, 1999, “Modeling Temperature and Strain Rate History Effects in OFHC Cu
,” Int. J. Plast.
0749-6419, 15
(6
), pp. 575
–603
.25.
Voce
, E.
, 1948, “The Relationship Between Stress and Strain for Homogenous Deformation
,” J. Inst. Met.
0020-2975, 74
, pp. 537
–562
.26.
Eleiche
, A. M.
, and Campbell
, J. D.
, 1976, “The Influence of Strain Rate History and Temperature on the Shear Strength of Copper, Titanium, and Mild-Steel
,” Technical Report No. AFML-TR-76-90, Air Force Materials Laboratory, Dayton.27.
Dorn
, J. E.
, Goldberg
, A.
, and Tietz
, B.
1949, “The Effect of Thermal-Mechanical History on the Strain Hardening of Metals
,” Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778, 180
, pp. 205
–224
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.