Molecular dynamics calculations are performed to study the effect of deformation sequence and history on the inelastic behavior of copper interfaces on the nanoscale. An asymmetric 45 deg tilt bicrystal interface is examined, representing an idealized high-angle grain boundary interface. The interface model is subjected to three different deformation paths: tension then shear, shear then tension, and combined proportional tension and shear. Analysis shows that path-history dependent material behavior is confined within a finite layer of deformation around the bicrystal interface. The relationships between length scale and interface properties, such as the thickness of the path-history dependent layer and the interface strength, are discussed in detail.

1.
Basinski
,
Z. S.
, and
Jackson
,
P. J.
, 1965, “
The Instability of the Work Hardened State
,”
Phys. Status Solidi
0031-8957,
9
, pp.
805
823
.
2.
Fernandes
,
J. V.
,
Gracio
,
J. J.
,
Schmitt
,
J. H.
, and
Rauch
,
E. F.
, 1993, “
Development and Persistence of Microbands in Copper Deformed under Complex Strain Paths
,”
Scr. Metall. Mater.
0956-716X,
28
, pp.
1335
1340
.
3.
Schmitt
,
J. H.
,
Fernandes
,
J. V.
,
Gracio
,
J. J.
, and
Vieria
,
M. F.
, 1991, “
Plastic Behaviour of Copper Sheets During Sequential Tension Tests
,”
Mater. Sci. Eng., A
0921-5093,
147
, pp.
143
154
.
4.
Vieira
,
M. F.
,
Fernandes
,
J. V.
, and
Chaparro
,
B.
, 2000, “
Yield Stress after Double Strain-Path Change
,”
Mater. Sci. Eng., A
0921-5093,
284
, pp.
64
69
.
5.
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
, 1999, “
Atomistic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stresses
,”
J. Eng. Mater. Technol.
0094-4289,
121
, pp.
114
119
.
6.
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
, and
Plimpton
,
S. J.
, 2001, “
Length Scale and Time Scale Effects on the Plastic Flow of Fcc Materials
,”
Acta Mater.
1359-6454,
49
, pp.
4363
4374
.
7.
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
, and
Plimpton
,
S. J.
, 2001, “
Computational Nanoscale Plasticity Simulations Using Embedded Atom Potentials
,”
Theor. Appl. Fract. Mech.
0167-8442,
37
, pp.
49
–98.
8.
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
,
Godfrey
,
A.
, and
Hughes
,
D. A.
, 2002, “
A Large Deformation Atomistic Study Examining Crystal Orientation Effects on the Stress-Strain Relationship
,”
Int. J. Plast.
0749-6419,
18
, pp.
203
229
.
9.
Heino
,
P.
,
Haekkinen
,
H.
, and
Kaski
,
K.
, 1998, “
Molecular-Dynamics Study of Mechanical Properties of Copper
,”
Europhys. Lett.
0295-5075,
41
, pp.
273
278
.
10.
Heino
,
P.
,
Hakkinen
,
H.
, and
Kaski
,
K.
, 1998, “
Molecular-Dynamics Study of Copper with Defects under Strain
,”
Phys. Rev. B
0163-1829,
58
, pp.
641
–652.
11.
Martyna
,
G. J.
,
Tuckerman
,
M. E.
,
Tobias
,
D. J.
, and
Klein
,
M. L.
, 1996, “
Explicit Reversible Integrators for Extended Systems Dynamics
,”
Mol. Phys.
0026-8976,
87
, pp.
1117
1157
.
12.
Swope
,
W. C.
,
Andersen
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
, 1982, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
0021-9606,
76
(
1
), pp.
637
649
.
13.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
1050-2947,
31
, pp.
1695
–1697.
14.
Nose
,
S.
, 1984, “
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
0026-8976,
52
, pp.
255
268
.
15.
Daw
,
M. S.
, and
Baskes
,
M. I.
, 1983, “
Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals
,”
Phys. Rev. Lett.
0031-9007,
50
, pp.
1285
–1288.
16.
Daw
,
M. S.
and
Baskes
,
M. I.
, 1984, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
0163-1829,
29
, pp.
6443
–6453.
17.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
, 2001, “
Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
0163-1829,
63
, pp.
224106
–224101.
18.
Kitamura
,
T.
,
Yashiro
,
K.
, and
Ohtani
,
R.
, 1997, “
Atomic Simulation on Deformation and Fracture of Nano-Single Crystal of Nickel in Tension
,”
JSME Int. J., Ser. A
1340-8046,
40
, pp.
430
435
.
19.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
, 2001, “
Molecular Dynamics Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
2237
2260
.
20.
Kelchner
,
C. L.
,
Plimpton
,
S. J.
, and
Hamilton
,
J. C.
, 1998, “
Dislocation Nucleation and Defect Structure During Surface Indentation
,”
Phys. Rev. B
0163-1829,
58
, pp.
11085
–11088.
21.
Zimmerman
,
J. A.
,
Kelchner
,
C. L.
,
Klein
,
P. A.
,
Hamilton
,
J. C.
, and
Foiles
,
S. M.
, 2001, “
Surface Step Effects on Nanoindentation
,”
Phys. Rev. Lett.
0031-9007,
87
(
16
), pp.
165507
–165501.
22.
Hirth
,
J. P.
and
Lothe
,
J.
, 1982,
Theory of Dislocations
,
Wiley
, New York, pp.
86
-
89
.
23.
Allen
,
M. P.
and
Tildesley
,
D. J.
, 1987,
Computer Simulations of Liquids
,
Clarendon
, Oxford, pp.
1
37
.
24.
Needleman
,
A.
, 1987, “
Continuum Model for Void Nucleation by Inclusion Debonding
,”
J. Appl. Mech.
0021-8936,
54
, pp.
525
531
.
25.
Needleman
,
A.
, 1990, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
0376-9429,
42
, pp.
21
–40.
26.
Xu
,
X.-P.
, and
Needleman
,
A.
, 1993, “
Void Nucleation by Inclusion Debonding in a Crystal Matrix
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
1
(
2
), pp.
111
132
.
27.
Spearot
,
D. E.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
, 2004, “
Non-Local Separation Constitutive Laws for Interfaces and Their Relation to Nanoscale Simulations
,”
Mech. Mater.
0167-6636,
36
(
9
), pp.
825
847
.
28.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
You do not currently have access to this content.