Simulations of nanoindentation in single crystals are performed using a finite temperature coupled atomistic/continuum discrete dislocation (CADD) method. This computational method for multiscale modeling of plasticity has the ability of treating dislocations as either atomistic or continuum entities within a single computational framework. The finite-temperature approach here inserts a Nose-Hoover thermostat to control the instantaneous fluctuations of temperature inside the atomistic region during the indentation process. The method of thermostatting the atomistic region has a significant role on mitigating the reflected waves from the atomistic/continuum boundary and preventing the region beneath the indenter from overheating. The method captures, at the same time, the atomistic mechanisms and the long-range dislocation effects without the computational cost of full atomistic simulations. The effects of several process variables are investigated, including system temperature and rate of indentation. Results and the deformation mechanisms that occur during a series of indentation simulations are discussed.

1.
Li
,
X.
, and
Bhushan
,
B.
, 2002, “
A Review of Nanoindentation Continuous Stiffness Measurement Technique and its Applications
,”
Mater. Charact.
1044-5803,
48
(
1
), pp.
11
36
.
2.
Picu
,
R. C.
, 2000, “
Atomistic-Continuum Simulation of Nano-Indentation in Molybdenum
,”
J. Comput.-Aided Mater. Des.
0928-1045,
7
(
2
), pp.
77
87
.
3.
Komvopoulos
,
K.
, and
Yan
,
W.
, 1997, “
Molecular Dynamics Simulation of Single and Repeated Indentation
,”
J. Appl. Phys.
0021-8979,
82
(
10
), pp.
4823
4830
.
4.
Kelchner
,
C. L.
,
Plimpton
,
S.
, and
Hamilton
,
J. C.
, 1998, “
Dislocation Nucleation and Defect Structure During Surface Indentation
,”
Phys. Rev. B
0163-1829,
58
(
17
), pp.
11085
11088
.
5.
Walsh
,
P.
,
Kalia
,
R. K.
,
Nakano
,
A.
, and
Vashishta
,
P.
, 2000, “
Amorphization and Anisotropic Fracture Dynamics During Nanoindentation of Silicon Nitride: A Multimillion Atom Molecular Dynamics Study
,”
Appl. Phys. Lett.
0003-6951,
77
(
26
), pp.
4332
4334
.
6.
Zimmerman
,
J. A.
,
Kelchner
,
C. L.
,
Klein
,
P. A.
,
Hamilton
,
J. C.
, and
Foiles
,
S. M.
, 2001, “
Surface Step Effects on Nanoindention
,”
Phys. Rev. Lett.
0031-9007,
87
(
16
), p.
165507
.
7.
Fang
,
T. H.
,
Weng
,
C. I.
, and
Chang
,
J. G.
, 2003, “
Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement
,”
Mater. Sci. Eng., A
0921-5093,
357
(
1‐2
), pp.
7
12
.
8.
Lilleodden
,
E. T.
,
Zimmerman
,
J. A.
,
Foiles
,
S. M.
, and
Nix
,
W. D.
, 2003, “
Atomistic Simulations of Elastic Deformation and Dislocation Nucleation During Nanoindentation
,”
J. Mech. Phys. Solids
0022-5096,
51
(
5
), pp.
901
920
.
9.
Feichtinger
,
D.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2003, “
Atomistic Simulations of Spherical Indentations in Nanocrystalline Gold
,”
Phys. Rev. B
0163-1829,
67
(
2
), pp.
024113
.
10.
Hasnaoui
,
A.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
, 2004, “
Interaction Between Dislocations and Grain Boundaries under an Indenter—A Molecular Dynamics Simulation
,”
Acta Mater.
1359-6454,
52
(
8
), pp.
2251
2258
.
11.
Van der Giessen
,
E.
, and
Needleman
,
A.
, 1995, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
3
(
5
), pp.
688
691
.
12.
Phillips
,
R.
, 2001,
Crystals, Defects and Microstructures: Modeling Across Scales
,
Cambridge University Press
, New York, Chap. 12.
13.
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2003, “
Atomistic/Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
11
(
3
), pp.
R33
R68
.
14.
Kohlhoff
,
S.
,
Gumbsch
,
P.
, and
Fischmeister
,
H. F.
, 1991, “
Crack Propagation in BCC Crystals Studied with a Combined Finite-Element and Atomistic Model
,”
Philos. Mag. A
0141-8610,
64
(
4
), pp.
851
878
.
15.
Broughton
,
J. Q.
,
Abraham
,
F. F.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Concurrent Coupling of Length Scales: Methodology and Application
,”
Phys. Rev. B
0163-1829,
60
(
4
), pp.
2391
2403
.
16.
Rudd
,
R. E.
, and
Broughton
,
J. Q.
, 1998, “
Coarse-Grained Molecular Dynamics and the Atomic Limit of Finite Elements
,”
Phys. Rev. B
0163-1829,
58
(
10
), pp.
R5893
R5896
.
17.
Rudd
,
R. E.
, and
Broughton
,
J. Q.
, 2000, “
Concurrent Coupling of Length Scales in Solid State Systems
,”
Phys. Status Solidi B
0370-1972,
217
(
1
), pp.
251
291
.
18.
Cai
,
W.
,
Koning
,
M.
,
Bulatov
,
V.
, and
Yip
,
S.
, 2000, “
Minimizing Boundary Reflections in Coupled-Domain Simulations
,”
Phys. Rev. Lett.
0031-9007,
85
(
15
), pp.
3213
3216
.
19.
E
,
Weinan
, and
Huang
,
Z.
, 2001, “
Matching Conditions in Atomistic-Continuum Modeling of Materials
,”
Phys. Rev. Lett.
0031-9007,
87
(
13
), p.
135501
.
20.
E
,
Weinan
, and
Huang
,
Z.
, 2002, “
A Dynamic Atomistic-Continuum Method for the Simulation of Crystalline Materials
,”
J. Comput. Phys.
0021-9991,
182
(
1
), pp.
234
261
.
21.
Clayton
,
R. W.
, and
Engquist
,
B.
, 1977, “
Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations
,”
Bull. Seismol. Soc. Am.
0037-1106,
67
(
6
), pp.
1529
1540
.
22.
Deymier
,
P. A.
, and
Vasseur
,
J. Q.
, 2002, “
Concurrent Multiscale Model of an Atomic Crystal Coupled with Elastic Continua
,”
Phys. Rev. B
0163-1829,
66
(
13
), p.
134106
.
23.
Muralidharan
,
K.
,
Deymier
,
P. A.
, and
Simmons
,
J. H.
, 2003, “
A Concurrent Multiscale Finite Difference Time Domain/Molecular Dynamics Method for Bridging an Elastic Continuum to an Atomistic System
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
11
(
4
), pp.
487
501
.
24.
Shenoy
,
V. B.
,
Shenoy
,
V.
, and
Phillips
,
R.
, 1999, “
Finite Temperature Quasicontinuum Methods
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
538
, pp.
465
471
.
25.
Shenoy
,
V. B.
, 2003, “
Multi-scale Modeling Strategies in Materials Science- The Quasicontinuum Method
,”
Bull. Mater. Sci.
0250-4707,
26
(
1
), pp.
742
745
.
26.
LeSar
,
R.
,
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
, 1989, “
Finite-Temperature Defect Properties from Free-Energy Minimization
,”
Phys. Rev. Lett.
0031-9007,
63
(
6
), pp.
624
627
.
27.
Curtarolo
,
S.
, and
Ceder
,
G.
, 2002, “
Dynamics of an Inhomogeneously Coarse Grained Multiscale System
,”
Phys. Rev. Lett.
0031-9007,
88
(
25
), p.
255504
.
28.
Dupuy
,
L.
,
Tadmor
,
E. B.
Miller
,
R. E.
, and
Phillips
,
R.
, 2004, “
A Finite Temperature Quasicontinuum
,”
Bull. Am. Phys. Soc.
0003-0503,
49
(
1
), p.
1420
.
29.
Park
,
H. S.
, and
Liu
,
W. K.
, 2004, “
In Introduction and Tutorial on Multiple Scale Analysis in Solids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17‐20
), pp.
1733
1772
.
30.
Park
,
H. S.
,
Karpov
,
E. G.
, and
Liu
,
W. G.
, 2003, “
A Temperature Equation for Coupled Atomistic/Continuum Simulations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17‐20
), pp.
1713
1732
.
31.
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2003, “
Coupling of Atomistic and Continuum Simulations using a Bridging Scale Decomposition
,”
J. Comput. Phys.
0021-9991,
190
(
1
), pp.
249
274
.
32.
Xiao
,
S. P.
, and
Belytschko
,
T.
, 2004, “
A Bridging Domain Method for Coupling Continua with Molecular Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17–20
), pp.
1645
1669
.
33.
Belytschko
,
T.
, and
Xiao
,
S. P.
, 2003, “
Coupling methods for continuum model with molecular model
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
1
(
1
), pp.
115
126
.
34.
Shastry
,
V.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2004, “
A Dynamic Finite Temperature Coupled Atomistic/Discrete Dislocation Method
,” submitted to Model Simul Mater. Sci. Eng.
35.
Holian
,
B.
, and
Ravelo
,
R.
, 1995, “
Fracture Simulations Using Large-scale Molecular Dynamics
,”
Phys. Rev. B
0163-1829,
51
(
11
), pp.
11275
11288
.
36.
Karpov
,
E. G.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2005, “
A Green’s Function Approach to Deriving Wave-Transmitting Boundary Conditions in Molecular Dynamics Simulations
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
9
), pp.
1250
1262
.
37.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Wagner
,
H. S.
, 2004, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17‐20
), pp.
1529
1578
.
38.
Shilkrot
,
L. E.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
, 2002, “
Coupled Atomistic and Discrete Dislocation Plasticity
,”
Phys. Rev. Lett.
0031-9007,
89
(
2
), p.
025501
.
39.
Miller
,
R. E.
,
Shilkrot
,
L. E.
, and
Curtin
,
W. A.
, 2004, “
A Coupled Atomistic and Discrete Dislocation Plasticity Simulation of Nanoindentation into Single Crystal Thin Films
,”
Acta Mater.
1359-6454,
52
(
2
), pp.
271
284
.
40.
Shilkrot
,
L. E.
,
Miller
,
R. E.
, and
Curtin
,
W. A.
, 2004, “
Multiscale Plasticity Modeling: Coupled Atomistic and Discrete Dislocation Mechanics
,”
J. Mech. Phys. Solids
0022-5096,
52
(
4
), pp.
755
787
.
41.
Van Vliet
,
K. J.
, and
Suresh
,
S.
, 2002, “
Simulations of Cyclic Normal Indentation of Crystal Surfaces Using the Bubble-raft Model
,”
Philos. Mag. A
0141-8610,
82
(
10
), pp.
1993
2001
.
42.
Daw
,
M. S.
, and
Baskes
,
M. I.
, 1984, “
Embedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals
,”
Phys. Rev. B
0163-1829,
29
(
12
), pp.
6443
6453
.
43.
Smirnova
,
J. A.
,
Zhigilei
,
L. V.
, and
Garrison
,
B. J.
, 1999, “
A Combined Molecular Dynamics and Finite Flement Method Technique Applied to Laser Induced Pressure Wave Propagation
,”
Comput. Phys. Commun.
0010-4655,
118
(
1
), pp.
11
16
.
44.
Cleveringa
,
H. H. M.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
, 1999, “
A Discrete Dislocation Analysis of Bending
,”
Int. J. Plast.
0749-6419,
15
(
8
), pp.
837
868
.
45.
Parameswaran
,
V. R.
,
Urabe
,
N.
, and
Weertman
,
J.
, 1972, “
Dislocation Mobility in Aluminum
,”
J. Appl. Phys.
0021-8979,
43
(
7
), pp.
2982
2986
.
46.
Jang
,
S.
, and
Voth
,
G. A.
, 1997, “
Simple Reversible Molecular Dynamics Algorithms for Nosé-Hoover Chain Dynamics
,”
J. Chem. Phys.
0021-9606,
107
(
22
), pp.
9514
9526
.
47.
Shiari
,
B.
, and
Miller
,
R. E.
, 2004, “
A Coupled Atomistic and Discrete Dislocation Plasticity Simulation (CADD): Dynamics and Finite Temperature Considerations
,”
Proceedings of the 2nd Canadian Network of Computational Materials Science Conference
,
Hamilton
, Ontario, Canada, p.
5
.
48.
Shiari
,
B.
, and
Miller
,
R. E.
, “
Coupled Atomistic and Discrete Dislocation Mechanics: The (CADD) Model
,”
Proceedings of the 16th Canadian Materials Science Conference
,
Ottawa
, Ontario, Canada, p.
46
.
49.
Shiari
,
B.
, and
Miller
,
R. E.
, 2004, “
Finite Temperature Coupled Atomistic/Continuum Discrete Dislocation Dynamics Simulation of Nanoindentation
,”
Proceedings of the International Workshop on Nanomechanics
,
Pacific Grove
, CA.
You do not currently have access to this content.