Dynamic compressive stress-strain curves for ethylene-propylene-diene monomer (EPDM) rubber at various strain rates under nearly uniaxial strain conditions have been determined with a pulse-shaped split Hopkinson pressure bar (SHPB). The resultant stress-strain curves exhibited significantly nonlinear behavior, with strong sensitivities to strain rates. The dynamic stresses in the EPDM rubber at certain strains under uniaxial strain conditions increased significantly as compared to those under uniaxial stress conditions. A strain-rate-dependent material model, including a strain-rate-sensitive term, has been developed through a strain-energy function for compressible Mooney-Rivlin hyperelastic solids. The model provided a good description of the compressive axial stress-strain response of the EPDM rubber at various strain rates under uniaxial strain conditions.

1.
Sicking
,
D. L.
,
Roschke
,
P. N.
, and
Ross
, Jr.,
H. E.
,
1990
, “
Low-Maintenance Rubber Crash Cushion
,”
J. Transp. Eng.
,
116
, pp.
359
376
.
2.
Mahfuz, H., Gama, B. A., and Raines, R. P., 1997, “High Strain Rate Behavior of the Component Materials of an Integral Armor,” Proceedings of the 29th International SAMPE Technical Conference, J. E. Green, S. W. Beckwith, and A. B. Strong, eds., pp. 614–624.
3.
Moy, P., Rodriguez, G., and Ghiorse, L., 2000, “Dynamic and Mechanical Characterization of EPDM Rubber at Low and High Temperatures,” Proceedings of the 32nd International SAMPE Technical Conference, P. J. Adams, S. A. Elsworth, M. J. Petkauskos, and T. C. Walton, eds., 32, pp. 372–380.
4.
Zukas, J. A., Nicholas, T., Swift, H. F., Greszczuk, L. B., and Curran, D. R., 1992, Impact Dynamics, Krieger Publishing Company, Malabar, FL.
5.
Cheng
,
M.
, and
Chen
,
W.
,
2003
, “
Experimental Investigation of the Stress-Stretch Behavior of EPDM Rubber with Loading Rate Effects
,”
Int. J. Solids Struct.
,
40
, pp.
4749
4768
.
6.
Song
,
B.
, and
Chen
,
W.
,
2003
, “
One-Dimensional Dynamic Compressive Behavior of EPDM Rubber
,”
ASME J. Eng. Mater. Technol.
,
125
, pp.
294
301
.
7.
Chen
,
W.
, and
Lu
,
F.
,
2000
, “
A Technique for Dynamic Proportional Multiaxial Compression on Soft Materials
,”
Exp. Mech.
,
40
, pp.
226
230
.
8.
Chen
,
W.
, and
Zhang
,
X.
,
1997
, “
Dynamic Response of Epon 828/T-403 Under Multiaxial Loading at Various Temperatures
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
305
308
.
9.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. London
,
B62
, pp.
676
700
.
10.
Lankford, J., 1993, “Dynamic Compressive Failure of Brittle Materials Under Hydrostatic Confinement,” Experimental Techniques in the Dynamics of Deformable Solids, K. T. Ramesh, ed., American Society of Mechanical Engineers, New York, NY, 165, pp. 1–10.
11.
Chen
,
W.
, and
Ravichandran
,
G.
,
1997
, “
Dynamic Compressive Failure of a Glass Ceramic Under Lateral Confinement
,”
J. Mech. Phys. Solids
,
45
, pp.
1303
1328
.
12.
Christensen
,
R. J.
,
Swanson
,
S. R.
, and
Brown
,
W. S.
, 1972, “Split-Hopkinson-Bar Tests on Rock Under Confining Pressure,” Exp. Mech., November,pp. 508–513.
13.
Konno
,
K.
,
Sato
,
Y.
,
Ueda
,
T.
, and
Onaga
,
M.
,
1998
, “
Mechanical Property of Recycled Concrete Under Lateral Confinement
,”
Transactions of the Japan Concrete Institute
,
20
, pp.
287
292
.
14.
Oguni, K., and Ravichandran, G., 1999, “Dynamic Behavior of Fiber Reinforced Composites Under Multiaxial Compression,” Thick Composites for Load Bearing Structures, Y. Rajapakse, and G. A. Kardomateas, eds., American Society of Mechanical Engineers, New York, NY, 235, pp. 87–96.
15.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2002
, “
Pulse-Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
42
, pp.
93
106
.
16.
Bhushan
,
B.
, and
Jahsman
,
W. E.
,
1978
, “
Measurements of Dynamic Material Behavior Under Nearly Uniaxial Strain Conditions
,”
Int. J. Solids Struct.
,
14
, pp.
739
753
.
17.
Dioh
,
N. N.
,
Leevers
,
P. S.
, and
Williams
,
J. G.
,
1993
, “
Thickness Effects in Split Hopkinson Pressure Bar Tests
,”
Polymer
,
34
, pp.
4230
4234
.
18.
Gray, G. T., and Blumenthal, W. R., 2000, “Split-Hopkinson Pressure Bar Testing of Soft Materials,” Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, OH, 8, pp. 488–496.
19.
Chen
,
W.
,
Lu
,
F.
,
Frew
,
D. J.
, and
Forrestal
,
M. J.
,
2002
, “
Dynamic Compression Testing of Soft Materials
,”
ASME J. Appl. Mech.
,
69
, pp.
214
223
.
20.
Song
,
B.
, and
Chen
,
W.
, 2004, “Dynamic Stress Equilibrium on a Rubber Specimen During a Split Hopkinson Pressure Bar Experiments,” Exp. Mech., in press.
21.
Ravichandran
,
G.
, and
Subhash
,
G.
,
1994
, “
Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar
,”
J. Am. Ceram. Soc.
,
77
, pp.
263
267
.
22.
Ward, I. M., 1983, Mechanical Properties of Solids Polymers, Second Edition, Wiley, New York.
23.
Ogden, R. W., and Roxburgh, D. G., 1999, “An Energy-Based Model for the Mullins Effect,” Constitutive Models for Rubbers, A. Dorfmann and A. Muhr, eds., Balkema Publishers, The Netherlands, pp. 23–28.
24.
Bergstro¨m
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
, pp.
931
954
.
25.
Yang
,
L. M.
,
Shim
,
V. P. W.
, and
Lim
,
C. T.
,
2000
, “
A Visco-Hyperelastic Approach to Modeling the Constitutive Behavior of Rubber
,”
Int. J. Impact Eng.
,
24
, pp.
545
560
.
26.
Whirley, R. G., and Hallquist, J. O., 1991, “DYNA3D: A Nonlinear, Explict, Three-Dimensional Finite Element Code for Solid and Structural Mechanics—User Manual,” UCRL-MA-107254, Lawrence Livermore National Laboratory, Livermore, CA.
27.
Warren
,
T. L.
, and
Forrestal
,
M. J.
,
1998
, “
Effects of Strain Hardening and Strain-Rate Sensitivity on the Penetration of Aluminum Targets with Spherical-Nosed Rods
,”
Int. J. Impact Eng.
,
35
, pp.
3737
3753
.
28.
Song
,
B.
,
Chen
,
W.
, and
Weerasooriya
,
T.
,
2003
, “
Quasi-static and Dynamic Compressive Behaviors of a S-2 Glass/SC15 Composite
,”
J. Compos. Mater.
,
37
, pp.
1723
1743
.
You do not currently have access to this content.