This paper assesses, via X-ray microbeam diffraction, the effects of development of dislocation substructure on the distribution of sub-grain misorientations in annealed OFHC copper deformed to large strains for compression, for shear, and for sequences of compression followed by shear. Polychromatic synchrotron x-radiation was used to study samples from four strain histories: virgin specimens, 50% effective strain in compression, 100% effective strain in torsion, and 50% compressive strain followed by 50% torsion. A very narrow beam illuminated an approximately 15 μm diameter column through the sample, and the microstructure of the specimens was mapped by translating the sample along two orthogonal axes perpendicular to the beam by increments of 10 μm. The beam diameter was considerably smaller than the average grain size in the virgin material. Both the degree of substructure formation and the nature of the distributed microstructure were quantified from the resulting Laue diffraction patterns. The polychromatic diffraction patterns of the polycrystalline samples consisted of well-defined streaks, and the azimuthal angular width of the streaks increased with plastic strain in a manner consistent with the scaling of the misorientation distribution of high angle boundaries for sub-grains reported recently using electron microscopy techniques limited to thin foils or thin surface layers. A lattice spin correction is introduced based on this scaling law in a simple extended Taylor scheme of polycrystal plasticity to achieve a retardation of texture development that is consistent with experimental results.

1.
Hansen
,
N.
, and
Kuhlmann-Wilsdorf
,
D.
,
1986
, “
Low Energy Dislocation Structures due to Unidirectional Deformation at Low Temperatures
,”
Mater. Sci. Eng.
,
81
, pp.
141
161
.
2.
Hansen, N. and Jensen, D. J., 1991, “Microscopic and Crystallographic Aspects of Flow Stress Anisotropy,” Proceedings of Plasticity 1991: The Third International Symposium on Plasticity and Its Current Applications, Ed. by J.-P. Boehler and A. S. Khan, pp. 131–194.
3.
Kuhlmann-Wilsdorf
,
D.
, and
Hansen
,
N.
,
1991
, “
Geometrically Necessary, Incidental, and Subgrain Boundaries
,”
Scr. Metall.
,
25
, pp.
1557
1562
.
4.
Hansen
,
N.
, and
Jensen
,
D. J.
,
1992
, “
Flow Stress Anisotropy Caused by Geometrically Necessary Boundaries
,”
Acta Metall. Mater.
,
40
,
No. 12
No. 12
.
5.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlman-Wilsdorf
,
D.
,
1992
, “
Evolution of FCC Deformation Structures in Polyslip
,”
Acta Metall. Mater.
,
40
, No.
2
, pp.
205
219
.
6.
Leffers
,
T.
,
1994
, “
Lattice Rotations During Plastic Deformation with Grain Subdivision
,”
Mater. Sci. Forum
,
157–6N
, Part 2, pp.
1815
1820
.
7.
Hughes, D. A., 1995, “The Evolution of Deformation Microstructures and Local Orientations,” Proc. 16th Riso Int. Symp. Mat. Sci., N. Hansen, D. Juul Jensen, Y. L. Liu, and B. Ralph, eds., pp. 63–85.
8.
Hughes
,
D. A.
,
Liu
,
Q.
,
Chrzan
,
D. C.
,
Hansen
,
N.
,
1997
, “
Scaling of Microstructural Parameters: Misorientations of Deformation Induced Boundaries
,”
Acta Mater.
,
45
, No.
1
, pp.
105
112
.
9.
Kuhlmann-Wilsdorf
,
D.
,
Kulkarni
,
S. S.
,
Moore
,
J. T.
, and
Starke
, Jr.,
E. A.
,
1999
, “
Deformation Bands, the LEDS Theory, and Their Importance in Texture Development: Part I. Previous Evidence and New Observations
,”
Metall. Mater. Trans. A
,
30A
, pp.
2491
2501
.
10.
Guvenilir
,
A.
,
Butler
,
G. C.
,
Haase
,
J. D.
,
McDowell
,
D. L.
, and
Stock
,
S. R.
,
1998
, “
X-ray Microbeam Quantification of Grain Subdivision Accompanying Large Deformations of Copper
,”
Acta Mater.
,
46
, No.
18
, pp.
6599
6604
.
11.
Patterson, II, C. R., Ignatiev, K. I., Guvenilir, A, Haase, J. D., Morano, R., Rek, Z. U., and Stock, S. R., 2000, “Nondestructive Determination of the Depth of Different Texture Components in Polycrystalline Samples,” Proc. Mater. Res. Soc., Vol. 590, pp. 253–258.
12.
Juul Jensen, D., Kvick, A., Lauridsen, E. M., Lienert, U., Margulies, L, Nielsen, S. F. and Poulsen, H. F., 2000, “Plastic Deformation and Recrystallization Studied by the 3-D X-ray Microscope,” Proc. Mater. Res. Soc., Vol. 590, pp. 227–240.
13.
Lienert, U., Martins, R., Grigull, S., Pinkerton, M., Poulsen, H. F. and Kvick, A., 2000, “High Spatial Resolution Strain Measurements with Bulk Materials by Slit-Imaging,” Proc. Mater. Res. Soc., Vol. 590, pp. 241–246.
14.
Larson, B. C., Tamura, N., Chung, J.-S., Ice, G. E., Budai, J. D., Tischler, J. Z., Yang, W., Weiland, H., and Lowe, W. P., 2000, “3-D Measurement of Deformation Microstructure in Al(0.2%)Mg using Submicron Resolution White X-ray Microbeams,” Proc. Mater. Res. Soc., Vol. 590, pp. 247–252.
15.
Graham, S., 1995, “The Stress State Dependence of Finite Inelastic Deformation Behavior of FCC Polycrystalline Materials,” Master’s thesis, GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
16.
Butler
,
G. C.
,
Graham
,
S.
,
McDowell
,
D. L.
,
Stock
,
S. R.
, and
Ferney
,
V. C.
,
1998
, “
Application of the Taylor Polycrystal Plasticity Model to Complex Deformation Experiments
,”
ASME J. Eng. Mater. Technol.
,
120
, pp.
197
205
.
17.
Stock
,
S. R.
,
Rek
,
Z. U.
,
Chung
,
Y. H.
,
Huang
,
P. C.
, and
Ditchek
,
B. M.
,
1993
,
J. Appl. Phys.
,
73
, pp.
1737
1742
.
18.
Campbell
,
G. H.
,
Foiles
,
S. M.
,
Huang
,
H.
,
Hughes
,
D. A.
,
King
,
W. E.
,
Lassila
,
D. H.
,
Nikkel
,
D. J.
,
de la Rubia
,
T. D.
,
Shu
,
J. Y.
,
Smyshlyaev
,
V. P.
,
1998
, “
Multi-scale Modeling of Polycrystal Plasticity: A Workshop Report
,”
Mater. Sci. Eng., A
,
251
, pp.
1
22
.
19.
Godfrey, A. and Hughes, D. A., 1998, “Characterization of Dislocation Wall Spacing Distributions,” Proceedings of the 1998 TMS Annual Meeting, pp. 191–199.
20.
Butler
,
G. C.
, and
McDowell
,
D. L.
,
1998
, “
Polycrystal Constraint and Grain Subdivision
,”
Int. J. Plast.
,
14
, No.
8
, pp.
703
717
.
21.
Asaro
,
R. J.
,
1983
, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
,
50
, pp.
921
934
.
22.
Butler, G. C., 1999, “Incorporation of Dislocation Substructure into Crystal Plasticity Theory,” Ph.D. thesis, GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
23.
Kocks, U. F., Kallend, J. S., Wenk, H.-R., Rollett, A. D., Wright, S. I., 1994. Preferred Orientation Package—Los Alamos. Document LA-CC-89-18, Los Alamos National Laboratory.
24.
Matthies
,
S.
,
1982
, “
Form Effects in the Description of the Orientation Distribution Function (ODF) of Texturized Materials by Model Components
,”
Phys. Status Solidi B
,
112
, pp.
705
716
.
25.
Wenk, H.-R., 1985, Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis, Academic Press, NY.
26.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1992
, “
On the Gradient-Dependent Theory of Plasticity and Shear Banding
,”
Acta Mech.
,
92
, pp.
209
225
.
27.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, No.
12
, pp.
1825
1857
.
28.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
, pp.
475
487
.
29.
Kuhlmann-Wilsdorf
,
D.
,
1989
, “
Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures
,”
Mater. Sci. Eng.
,
A113
, pp.
1
41
.
You do not currently have access to this content.