A study on the prediction of springback angle is presented, with focus on the straight flanging operation. The objective of this work is to evaluate the reliability of different methods of prediction. An experiment of straight flanging operation is conducted. Major prediction approaches such as analytical model, numerical simulation using the Finite Element Method (FEM) and the Meshfree Method using the Reproducing Kernel Particle Methods (RKPM) are discussed. A set of sample problems is computed and comparisons are made with the experiment. The numerical analysis shows that the prediction from the 3D meshfree contact code matches well with the data from the FEM 2D solid model. A material property described by the kinematic hardening law provides a better prediction of springback than the isotropic hardening law.

1.
Xia, Z. Cedric, Tang, Sing C., and Carnes, J. C., 1998, “Accurate springback prediction with mixed solid/shell elements,” Simulation of Materials Processing: Theory, Methods and Applications, Huetink and Baaijens, eds.
2.
Wang, N. M., 1984, “Predicting the effect of die gap on flange springback,” Proceedings of 13th Biennial IDDRG Congress, Melbourne, Australia, pp. 133–147.
3.
Monfort, G. and Bragard, A., 1985, “A simple model of shape errors in forming and its application to the reduction of springback,” Computer Modeling of Sheet Metal Forming Process: Theory, Verification and Application, N. M. Wang and S. C. Tang, eds., pp. 273–287.
4.
Cao, J., Liu, Z. H. and Liu, W. K., 1999, “Prediction of springback in straight flanging operation,” Symposium on Advances in Sheet Metal Forming, ASME International Mechanical Engineering Congress and Exposition, MED-Vol. 10, pp. 921–928.
5.
Liu
,
Y. C.
,
1984
, “
Springback reduction in U-channels: ‘double-bend’ technique
,”
Journal of Applied Metalworking
,
3
, pp.
148
156
.
6.
Song, N., and Cao, J., 2001, “A multi-approach study on springback in straight flanging,” submitted to ASME J. Appl. Mech.
7.
Liu, W. K., Adee, J., and Jun, S., 1993, “Reproducing Kernel and Wavelet Particle Methods for Elastic and Plastic Problems,” Advanced Computational Methods for Material Modeling, D. J. Benson and R. A. Asaro, eds., AMD 180/PVP 268 ASME, pp. 175–190.
8.
Liu
,
W. K.
,
Jun
,
S.
, and
Zhang
,
Y. F.
,
1995
, “
Reproducing Kernel Particle Methods
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
1081
1106
.
9.
Liu
,
W. K.
,
Jun
,
S.
,
Li
,
S.
,
Adee
,
J.
, and
Belytschko
,
T.
,
1995
, “
Reproducing Kernel Particle Methods for Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1655
1679
.
10.
Chen
,
J. S.
,
Pan
,
C.
,
Wu
,
C. T.
, and
Liu
,
W. K.
,
1996
, “
Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
139
, pp.
195
228
.
11.
Liu
,
W. K.
,
Chen
,
Y.
,
Chang
,
C. T.
, and
Belytschko
,
T.
,
1996
, “
Advances in Multiple Scale Kernel Methods
,”
A special feature article for the 10th anniversary volume of Computational Mechanics
,
18
, No. 2,
June
, pp.
73
111
.
12.
Jun
,
S.
,
Liu
,
W. K.
, and
Belytschko
,
T.
,
1998
, “
Explicit Reproducing Kernel Particle Methods for Large Deformation Problems
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
137
166
.
13.
Liu
,
W. K.
, and
Jun
,
S.
,
1998
, “
Multiple Scale Reproducing Kernel Particle Methods for Large Deformation Problems
,”
Int. J. Numer. Methods Eng.
,
41
, pp.
1339
1362
.
14.
Liu
,
W. K.
, and
Chen
,
Y.
,
1995
, “
Wavelet and Multiple Scale Reproducing Kernel Methods
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
901
931
.
15.
Li
,
S.
,
Qian
,
D.
,
Liu
,
W. K.
, and
Belytschko
,
T.
,
2001
, “
A Meshfree Contact-detection Algorithm
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3271
3292
.
16.
Underwood, P., 1983, Computational Methods for Transient Analysis, Belytschko, T., and Hughes, T. J. R., eds., North-Holland, Amsterdam.
17.
Chou
,
P. C.
, and
Wu
,
L.
,
1986
, “
A Dynamic Relaxation Finite-Element Method for Metal Forming Process
,”
Int. J. Mech. Sci.
,
28
, No.
4
, pp.
231
250
.
18.
Huang, Mai, and Gerdeen, J. C., 1994, “Springback of Doubly Curved Developable Surfaces—An Overview,” SAE paper No. 940938, Analysis of Autobody Stamping Technology, SP-1021, SAE International Congress, Detroit, MI, pp. 125–138.
You do not currently have access to this content.