Damage evolution and failure characteristics were investigated for a 10 deg off-axis SiC/It unidirectional metal matrix composite (MMC) lamina subjected to monotonic loading. A replica technique was used to monitor sequential damage evolution under monotonic loading for the 10 deg MMC lamina. The replicas were then examined under a Scanning Electron Microscope (SEM). Characteristic debonding along the fiber—a dominant damage mechanism, matrix plasticity in the form of slip bands and fiber cracks were observed at various strain levels and were rationalized based on the state of stress in the off-axis lamina. This investigation provides an insight into the off-axis material response for MMC lamina and associated damage mechanisms and can guide mechanism-based multiaxial constitutive model and failure criteria development.

1.
Aboudi
J.
, and
Benveniste
Y.
,
1985
, “
Constitutive Relations for Fiber-reinforced Inelastic Laminated Plates
,”
ASME Journal of Applied Mechanics
, Vol.
51
, pp.
107
13
.
2.
Adams
D. F.
, and
Doner
D. R.
,
1967
, “
Longitudinal Shear Loading of A Unidirectional Composite
,”
J. Composite Materials
, Vol.
1
, p.
4
4
.
3.
Adams
D. F.
,
1970
, “
Inelastic Analysis of A Unidirectional Composite Subjected to Transverse Normal Loading
,”
J. Composite Materials
, Vol.
7
, p.
310
310
.
4.
Allen
D. H.
,
Jones
R. H.
, and
Boyd
J. G.
,
1994
, “
Micromechanical Analysis of A Continuous Fiber Metal Matrix Composite Including The Effects of Matrix Viscoplasticity and Evolving Damage
,”
J. Mechanics And Physics of Solids
, Vol.
42
, pp.
505
29
.
5.
Bert, C. W., 1975, “Experimental Characterization of Composites,” Composite Materials, Vol. 8, Part 2, Chamis, C. C., ed., Academic Press, New York, pp. 73–133.
6.
Brust, F. W., Majumdar, B. S., and Newaz, G. M., 1992, “Constitutive Response Analysis of Metal Matrix Composites via the Unit Cell Model,” ASTM Symposium on Composite Materials, Pittsburgh.
7.
Chamis, C. C., and Sullivan, T. L., 1972, “Combined-Load Stress-Strain Relationships of Fiber Composite Laminates,” NASA TM X-68050, Cleveland, Ohio.
8.
Chamis, C. C., and Sinclair, J. H., 1977, “Ten-deg Off-axis Test for Shear Properties in Fiber Composites,” SESA Spring Meeting held in Dallas, TX on May 15–20.
9.
Chamis, C. C., and Hopkins, D. A., 1988, Testing Technology of Metal Matrix Composites, ASTM Special Technical Publication No. 964, P. R. Giovanni and N. R. Adsit, eds., Philadelphia, PA, ASTM, pp. 177–196.
10.
Daniel, I. M., and Liber, T., 1975, “Lamination Residual Stresses in Fiber Composites,” ITT Res. Inst. Rep. IITRI-D6073.
11.
Dvorak
G. J.
, and
Bahei-El-Din
Y. A.
,
1982
, “
Plasticity Analysis of Fibrous Composites
,”
ASME Journal of Applied Mechanics
, Vol.
49
, p.
337
337
.
12.
Gao
Z.
, and
Zhao
H.
,
1995
, “
Life Predictions of Metal Matrix Composite Laminates Under Isothermal and Nonisothermal Fatigue
,”
J. Composite Materials
, Vol.
29
, No.
9
, pp.
1142
68
.
13.
Hashing
Z.
, and
Rosen
B. W.
,
1964
, “
The Elastic Moduli of Fiber-reinforced Materials
,”
ASME Journal of Applied Mechanics
, Vol.
31
, p.
223
223
.
14.
Hashin
Z.
,
1979
, “
Analysis of Properties of Fiber Composites with Anisotropic Constituents
,”
ASME Journal of Applied Mechanics
, Vol.
46
, p.
543
543
.
15.
Hill
R.
,
1964
, “
Theory of Mechanical Properties of Fiber-Strengthened Materials: II Inelastic Behavior
,”
J. Mechanics and Physics of Solids
, Vol.
12
, p.
213
213
.
16.
Johnson, W. S., Lubowinski, S. J., Brewer, W. D., and Hoogstraten, C. A., 1988, Mechanical Characterization of SCS6/Ti 15-3 Metal Matrix Composites at Room Temperature, NASP Technical Memorandum No. 1014, NASA-LaRC.
17.
Johnson, W. S., Lubowinnski, S. J., and Highsmith, A. L., 1990, “Mechanical Characterization of Unnotched SCS-6/Ti-15-3 Metal Matrix Composites at Room Temperature,” Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites, ARM STP 1080, Kennedy, Moeller, and Johnson, eds., American Society for Testing and Materials, Philadelphia, pp. 193–218.
18.
Kelly
A.
, and
Tyson
W. R.
,
1965
, “
Tensile Properties of Fiber-Reinforced Metals: Copper/Tungsten and Copper/Molybdenum
,”
J. Mechanics and Physics of Solids
, Vol.
13
, p.
329
329
.
19.
Kelly
A.
,
1972
, “
Reinforcement of Structure Materials By Long Strong Fibers
,”
Metall. Trans.
, Vol.
3
, p.
2313
2313
.
20.
Lerch, B. A., and Saltman, J., 1991, Tensile Deformation Damage in SiC Reinforced Ti-15V-3CR3Sn, NASA Technical Memorandum No. 103620, Cleveland, Ohio, Lewis Research Center, NASA.
21.
Majumdar
B. S.
, and
Newaz
G. M.
,
1991
, “
Thermomechanical Fatigue of a Quasi-isotropic Metal Matrix Composites
,”
ASTM STP
1110
, pp.
732
752
.
22.
Majumdar
B. S.
, and
Newaz
G. M.
,
1992
, “
Inelastic Deformation of Metal Matrix Composite: Plasticity and Damage Mechanisms
,”
Philosophical Magazine A
, Vol.
66
, No.
2
, pp.
187
212
.
23.
Majumdar, B. S., Newaz, G. M., and Ellis, J. R., 1993, “Evaluation and Damage In Ti Based Fiber Reinforced Composites,” Metall. Trans.
24.
Morel, M., Saravanos, D. A., and Chamis, C. C., 1990, Concurrent Micromechanical Tailoring and Fabrication Process Optimization for Metal Matrix Composites, NASA Technical Memorandum No. 103670, Cleveland, Ohio, Lewis Research Center, NASA.
25.
Newaz, G. M., and Majumdar, B. S., 1991, “Deformation and Failure Mechanism in Metal Matrix Composites,” The Winter Annual Meeting of The America Society of Mechanical Engineers, Atlanta, Georgia, pp. 1–6.
26.
Newaz
G. M.
,
Majumdar
B. S.
, and
Brust
F. W.
,
1992
, “
Thermal Cycling Response of Quasi-isotropic Meal Matrix Composites
,”
ASME JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY
, Vol.
114
, pp.
156
61
.
27.
Newaz, G. M., 1993, “Deformation and Failure of High Temperature Metal Matrix Composites,” IGF9 Estratto Dagli Atti del, IX Convegno Nzionale, Gruppo Italiano Frattura, Toma, 2-4 giugno.
28.
Newaz
G. M.
, and
Majumdar
B. S.
,
1993
, “
Failure Modes In Transverse MMC Lamina Under Compression
,”
J. Materials Science and Letters
, Vol.
12
, pp.
551
552
.
29.
Newaz, G. M., Majumdar, B. S., and Brust, F. W., 1996, “Inelastic Deformation Mechanisms in SCS-6/Ti 15-3 Metal Matrix Composite (MMC) Lamina Under Compression,” Life Prediction Methodology for Titanium Matrix Composites, ASTM STP 1253, W. S. Johnson, J. M. Larsen, and B. N. Cox, eds., American Society for Testing and Materials, pp. 208–230.
30.
Nimmer
R. P.
,
Bankert
R. J.
,
Russell
E. S.
,
Smith
G. A.
, and
Wright
K. P.
,
1991
, “
Micromechanical Modeling of Fiber/Matrix Interface Effect in Transversely Loaded Sic/Ti-6-4 Metal Matrix Composites
,”
J. Comps. Technol. Res.
, Vol.
13
, p.
3
3
.
31.
Pindera, M. J., 1989, “Shear Testing of Fiber Reinforced Metal Matrix Composites,” Metal Matrix Composites: Analysis, and Failure Modes ASTM STP 1032, W. S. Johnson, ed., American Society for Testing and Materials, Philadelphia, pp. 19–42.
32.
Robinson, D. N., Duffy, S. F., and Ellis, J. R., 1987,Thermal Stress, Material Deformation and Thermo-Mechanical Fatigue, H. Sehitoglu and S. Y. Zamrik, eds., The American Society of Mechanical Engineers, Pressure Vessel and Piping, Vol. 123, New York, p. 1.
33.
Sun, C. T., 1989, “Modeling Continuous Fiber Metal Matrix Composite as an Orthotropic Elastic-Plastic Material,” Metal Matrix Composites; Testing, Analysis, and Failure Modes, ASTM STP 1032, W. S. Johnson, ed., American Society for Testing and Materials, Philadelphia, pp. 148–160.
34.
Sun, C. T., and Chen, J. L., 1989, “A Simple Flow Rule For Characterizing Nonlinear Behavior of Fiber Composites,” J. of Composite Materials, Vol. 23.
35.
Sun, C. T., Chen, J. L., Sha, G. T., and Koop, W. E., 1990, “Mechanical Characterization of SCS-6/Ti-6-4 Metal Matrix Composte,” J. of Composite Materials, Vol. 24.
36.
Walker, K. P., Jordan, E. H., and Freed, A. D., 1989, Nonlinear Mesomechanics of Composite with Periodic Microstructure: First Report, NASA Technical Memorandum No. 102051, Cleveland, Ohio, Lewis Research Center, NASA.
This content is only available via PDF.
You do not currently have access to this content.