Many polymeric materials, including structural adhesives, exhibit a nonlinear viscoelastic response. The nonlinear free volume approach is based on the Doolittle concept that the “free volume” controls the mobility of polymer molecules and, thus, the inherent time scale of the material. It then follows that factors such as temperature and moisture, which change the free volume, will influence the time scale. Furthermore, stress-induced dilatation will also affect the free volume and, hence, the time scale. However, during this investigation dilatational effects alone were found to be insufficient in describing the response of near pure shear tests performed on a bisphenol A epoxy with an amido amine hardener. Thus, the free volume approach presented here has been modified to include distortional effects in the inherent time scale of the material. In addition to predicting the global response under a variety of multiaxial stress states, the modified free volume theory also accurately predicts the local displacement fields, including those associated with a localized region, as determined from geometric moire´ measurements at various stages of deformation.

1.
Arcan
M.
, et al.,
1984
,
Experimental Mechanics
,
18
,
141
5
.
2.
Argon
A. S.
,
1973
,
Phil. Mag.
,
28
,
839
65
.
3.
Arruda
E. M.
, and
Boyce
M. C.
,
1993
,
Int. J. Plasticity
,
9
,
697
720
.
4.
Bauwens
J. C.
,
1970
,
J. Polynt. Sci.: Part A-2
,
8
,
893
901
.
5.
Bowden, P. B., 1973, The Physics of Glassy Polymers, R. N. Haward, ed., Applied Science, London.
6.
Bowden
P. B.
, and
Jukes
J. A.
,
1968
,
J. Mater. Sci.
,
3
,
183
190
.
7.
Bowden
P. B.
, and
Jukes
J. A.
,
1972
,
J. Mater. Sci.
,
7
,
52
63
.
8.
Boyce
M. C.
,
Parks
D. M.
, and
Argon
A. S.
,
1988
,
Mech. Mater.
,
7
,
15
33
.
9.
Boyce
M. C.
, et al.,
1994
,
Polym. Eng. Sci.
,
34
,
716
25
.
10.
Doolittle
A. K.
,
1951
,
J. Appl. Mech.
,
22
,
1471
5
.
11.
Doolittle
A. K.
,
1957
,
J. Appl. Mech.
,
28
,
901
5
.
12.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, John Wiley, New York.
13.
Fillers
R. W.
, and
Tschoegl
N. W.
,
1977
,
Trans. Soc. Rheol
,
21
,
51
100
.
14.
G’Sell, C., 1985, Strength of Metals and Alloys, 3, ICSMA 7, McQueen, H. J. et al, eds., 1943–82.
15.
Haward, R. N., 1973, The Physics of Glassy Polymers, R. N. Haward, ed., Applied Science, London.
16.
Knauss
W. G.
, and
Emri
I.
,
1981
,
Computers &Structures
,
13
,
123
8
.
17.
Knauss
W. G.
, and
Emri
I.
,
1987
,
Polym. Eng. Sci.
,
27
,
86
100
.
18.
Knauss
W. G.
, and
Kenner
V. H.
,
1980
,
J. Appl. Phys.
,
51
,
5131
6
.
19.
Knauss, W. G., and Lu, H., 1996, Abstracts of the 1996 Mechanics & Materials Conference, 199.
20.
Liang
Y-M.
, and
Liechti
K. M.
,
1996
,
Int. J. Solids Struct.
,
33
,
1479
1500
.
21.
Liechti, K. M. et al., 1996, Univ. of Texas at Austin Final Report, EMRL 96–6.
22.
Schapery
R. A.
,
1966
,
Int. J. Solids Struct.
,
2
,
407
25
.
23.
Schapery
R. A.
,
1969
,
Polym. Eng. Sci.
,
9
,
295
310
.
24.
Shay
R. M.
, and
Caruthers
J. M.
,
1986
,
J. Rheol.
,
30
,
781
827
.
25.
Wang
M. C.
, and
Guth
E. J.
,
1952
,
J. Chem. Phys.
,
20
,
1144
57
.
26.
Whitney
W.
, and
Andrews
R. D.
,
1967
,
J. Polym. Sci.: Part C
,
16
,
2981
90
.
27.
Wu
P. D.
, and
van der Giessen
E.
,
1994
,
Int. J. Solids Struct.
,
31
,
1493
1517
.
This content is only available via PDF.
You do not currently have access to this content.