Abstract

Submerged Arc Additive Manufacturing (SAAM) is an advanced Wire Arc-based Additive Manufacturing (WAAM) technique known for its uniform deposition structure, high deposition rate, and superior surface finish. However, it is difficult and expensive to experimentally investigate the arc column in SAAM due to its submerged nature under flux. This paper presents an effective alternative: developing a radiation-based analytical model to predict the complex temperature distribution within the SAAM arc column. It focuses on the radiation heat transfer phenomenon since the temperatures attained inside the arc column are beyond the melting temperature of the material involved, and the presence of granular flux and slag intensifies the effect of the same. The model incorporates key input process parameters like wire diameter, stick-out length, current, voltage, and travel speed alongside design parameters like bead width, penetration depth, and material reinforcement. The double ellipsoidal heat source model is the foundation for generating the temperature profile. The predicted temperature profile resembles the double ellipsoid in other arc welding-based additive manufacturing techniques. The model's predictions showed a deviation of approximately 14% from experimental results, validating its effectiveness. Extensive parametric studies were carried out using the developed model. It was observed that longer stick-out lengths dampened temperature variations, while higher currents confined the affected zone further. Increased travel speed reduces the heating and cooling rate, while voltage behaves the opposite way. This analytical approach offers a cost-effective alternative for optimizing process parameters to achieve desired dimensions and deposition quality in SAAM applications.

References

1.
Li
,
Y.
,
Wu
,
S.
,
Li
,
H.
, and
Cheng
,
F.
,
2021
, “
Dramatic Improvement of Impact Toughness for the Fabricating of Low-Carbon Steel Components via Submerged Arc Additive Manufacturing
,”
Mater. Lett.
,
283
, p.
128780
.
2.
Li
,
Y.
,
Wu
,
S.
,
Wang
,
J.
,
Wang
,
H.
,
Kong
,
W.
, and
Cheng
,
F.
,
2022
, “
Microstructure Homogeneity and Strength-Toughness Balance in Submerged Arc Additive Manufactured Mn-Ni-Mo High-Strength Steel by Unique Intrinsic Heat Treatment
,”
J. Mater. Process. Technol.
,
307
, p.
117682
.
3.
Li
,
Y.
,
Wu
,
S.
,
Lv
,
X.
,
Feng
,
J.
,
Qu
,
H.
, and
Cheng
,
F.
,
2021
, “
Study on the Influence of Interlayer Temperature on Microstructure and Mechanical Properties of Submerged Arc Additively Manufactured Low-Carbon Steel and Its In-Situ Toughening Mechanism
,”
J. Manuf. Processes
,
71
, pp.
356
373
.
4.
Li
,
Y.
,
Wu
,
S.
,
Li
,
H.
,
Dong
,
Y.
, and
Cheng
,
F.
,
2021
, “
Submerged Arc Additive Manufacturing (SAAM) of Low-Carbon Steel: Effect of In-Situ Intrinsic Heat Treatment (IHT) on Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
46
, p.
102124
.
5.
Goala
,
S.
, and
Sarkar
,
P.
,
2024
, “
Selection Methodology for Additive Manufacturing Processes Considering Design, Material, and Manufacturability
,”
RPJ
,
30
(
1
), pp.
15
32
.
6.
Komen
,
H.
,
Shigeta
,
M.
,
Tanaka
,
M.
,
Abe
,
Y.
,
Fujimoto
,
T.
,
Nakatani
,
M.
, and
Murphy
,
A. B.
,
2021
, “
Numerical Investigation of Heat Transfer During Submerged Arc Welding Phenomena by Coupled DEM-ISPH Simulation
,”
Int. J. Heat Mass Transfer
,
171
, p.
121062
.
7.
Negi
,
V.
, and
Chattopadhyaya
,
S.
,
2013
, “
Critical Assessment of Temperature Distribution in Submerged Arc Welding Process
,”
Adv. Mater. Sci. Eng.
,
2013
, pp.
1
9
.
8.
Sudnik
,
V. A.
,
Erofeev
,
V. A.
,
Maslennikov
,
A. V.
,
Slezkin
,
D. V.
, and
Tsvelev
,
R. V.
,
2013
, “
A Mathematical Model of the Submerged-Arc Welding Process and Phenomena in the Arc Cavity
,”
Weld. Int.
,
27
(
8
), pp.
629
637
.
9.
Goett
,
G.
,
Gericke
,
A.
,
Henkel
,
K.-M.
, and
Uhrlandt
,
D.
,
2020
, “
Determining the Arc Temperature in Submerged Arc Welding Using the Bartels Method
,”
J. Phys. D: Appl. Phys.
,
53
(
43
), p.
435208
.
10.
Cho
,
D.-W.
,
Kiran
,
D. V.
, and
Na
,
S.-J.
,
2017
, “
Analysis of Molten Pool Behavior by Flux-Wall Guided Metal Transfer in Low-Current Submerged Arc Welding Process
,”
Int. J. Heat Mass Transfer
,
110
, pp.
104
112
.
11.
Karaoğlu
,
S.
, and
Seçgin
,
A.
,
2008
, “
Sensitivity Analysis of Submerged Arc Welding Process Parameters
,”
J. Mater. Process. Technol.
,
202
(
1–3
), pp.
500
507
.
12.
Sarkar
,
S. S.
,
Das
,
A.
,
Paul
,
S.
,
Mali
,
K.
,
Ghosh
,
A.
,
Sarkar
,
R.
, and
Kumar
,
A.
,
2021
, “
Machine Learning Method to Predict and Analyse Transient Temperature in Submerged Arc Welding
,”
Measurement
,
170
, p.
108713
.
13.
Traidia
,
A.
, and
Roger
,
F.
,
2011
, “
Numerical and Experimental Study of Arc and Weld Pool Behaviour for Pulsed Current GTA Welding
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
2163
2179
.
14.
Fan
,
H. G.
,
Shi
,
Y. W.
, and
Na
,
S. J.
,
1997
, “
Numerical Analysis of the Arc in Pulsed Current Gas Tungsten Arc Welding Using a Boundary-Fitted Coordinate
,”
J. Mater. Process. Technol.
,
72
(
3
), pp.
437
445
.
15.
Wang
,
Q. W.
,
Zhu
,
S.
,
Yin
,
F. L.
,
Liang
,
Y. Y.
, and
Wang
,
X. M.
,
2011
, “
Numerical Simulation of MIG Welding Arc With Longitudinal Magnetic Field
,”
MSF
,
704–705
, pp.
668
673
.
16.
North
,
T. H.
,
Bell
,
H. B.
,
Nowicki
,
A.
, and
Craig
,
I.
,
1978
, “
Slag/Metal Interaction, Oxygen and Toughness in Submerged Arc Welding
,”
Weld. J.
,
57
(
3
), pp.
63S
75S
.
17.
Mitra
,
U.
, and
Eagar
,
T. W.
,
1991
, “
Slag-Metal Reactions During Welding: Part I. Evaluation and Reassessment of Existing Theories
,”
MTB
,
22
(
1
), pp.
65
71
.
18.
Paton
,
E. O.
,
1958
,
Automatische Lichtbogenschweissung (Automatic arc Welding) Halle (Saale)
,
VEB Carl Marhold Verlag
,
Berlin, Germany
.
19.
Li
,
R.
,
Ju
,
G.
,
Zhao
,
X.
,
Zhang
,
Y.
,
Li
,
Y.
,
Hu
,
G.
,
Yan
,
M.
,
Wu
,
Y.
, and
Lin
,
D.
,
2024
, “
Simulation of Residual Stress and Distortion Evolution in Dual-Robot Collaborative Wire-Arc Additive Manufactured Al-Cu Alloys
,”
Virtual Phys. Prototyp.
,
19
(
1
), p.
e2409390
.
20.
Wang
,
J.
,
Fu
,
A.
,
Liu
,
B.
,
Chen
,
Y.
,
Cao
,
Y.
,
Zhou
,
H.
,
Wang
,
B.
, et al
,
2024
, “
Weakening the Mechanical Property Anisotropy of Additively Manufactured Medium Entropy Alloy by Controlling the Cellular Structure
,”
Addit. Manuf.
,
89
, p.
104303
.
21.
Wang
,
Z.
,
Wang
,
C.
,
Zhang
,
S.
,
Qiu
,
L.
,
Lin
,
Y.
,
Tan
,
J.
, and
Sun
,
C.
,
2024
, “
Towards High-Accuracy Axial Springback: Mesh-Based Simulation of Metal Tube Bending via Geometry/Process-Integrated Graph Neural Networks
,”
Expert Syst. Appl.
,
255
, p.
124577
.
22.
Peng
,
X.
,
Han
,
Y.
,
Liu
,
G.
,
Li
,
J.
,
Sa
,
G.
,
Yi
,
B.
, and
Jiang
,
S.
,
2024
, “
Effect of Manufacturing Process Parameters on the Compression and Energy Absorption Properties of 4D-Printed Deformable Honeycomb Structure
,”
Smart Mater. Struct.
,
33
(
7
), p.
075035
.
23.
Saravanan
,
S.
, and
Sivaraj
,
C.
,
2013
, “
Coupled Thermal Radiation and Natural Convection Heat Transfer in a Cavity with a Heated Plate Inside
,”
Int. J. Heat Fluid Flow
,
40
, pp.
54
64
.
24.
Badruddin
,
I. A.
,
Zainal
,
Z. A.
,
Narayana
,
P. A. A.
, and
Seetharamu
,
K. N.
,
2007
, “
Numerical Analysis of Convection Conduction and Radiation Using a Non-Equilibrium Model in a Square Porous Cavity
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
20
29
.
25.
Zhang
,
J.
,
Shao
,
G.
,
Fan
,
J.
,
Wang
,
L.
, and
Zhang
,
D.
,
2022
, “
A Review on Parallel Development of Flux Design and Thermodynamics Subject to Submerged Arc Welding
,”
Processes
,
10
(
11
), p.
2305
.
26.
Goala
,
S.
, and
Joshi
,
S. N.
,
2024,
An Algorithmic Framework for Optimizing Submerged Arc Additive Manufacturing Process Parameters for User-Specified Bead Width
,”
Proceeedings of the MATEC Web Conference
,
Glasgow, UK
,
Aug. 28–30
, Vol.
401
, p.
02008
.
27.
Chan
,
B.
,
Chandel
,
R. S.
,
Yang
,
L. J.
, and
Bibby
,
M. J.
,
1994
, “
A Software System for Anticipating the Size and Shape of Submerged Arc Welds
,”
J. Mater. Process. Technol.
,
40
(
3–4
), pp.
249
262
.
28.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
29.
Aswal
,
V. K.
,
Jain
,
J. K.
, and
Sonia
,
P.
,
2021
, “
Review on the Behavior of Various Parameters on Heat Distribution in the SAW Process
,”
Mater. Today: Proc.
,
47
, pp.
6734
6739
.
30.
Yoon
,
K.-B.
,
Park
,
W.-H.
, and
Kim
,
T.-K.
,
2013
, “
Estimation of Convection Heat Transfer Coefficient and Surface Emissivity of a Nonreacting Specimen in Cone Calorimeter Using RPSO Method
,”
J. Mech. Sci. Technol.
,
27
(
6
), pp.
1575
1580
.
31.
Yadav
,
A.
,
Ghosh
,
A.
, and
Kumar
,
A.
,
2017
, “
Experimental and Numerical Study of Thermal Field and Weld Bead Characteristics in Submerged Arc Welded Plate
,”
J. Mater. Process. Technol.
,
248
, pp.
262
274
.
32.
Pratap Singh
,
R.
,
Singh
,
A.
, and
Singh
,
A.
,
2020
, “
Optimization of Hardness of Weld in Submerged Arc Welding
,”
Mater. Today: Proc.
,
26
, pp.
1827
1830
.
33.
Kothandaraman
,
C. P.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
New Age International
,
New Delhi, India
. https://books.google.co.in/books?id=hIviT25WWIEC
34.
Cadiou
,
S.
,
Courtois
,
M.
,
Carin
,
M.
,
Berckmans
,
W.
, and
Le Masson
,
P.
,
2020
, “
Heat Transfer, Fluid Flow and Electromagnetic Model of Droplets Generation and Melt Pool Behaviour for Wire Arc Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
148
, p.
119102
.
35.
Chen
,
X.
,
Wang
,
C.
,
Ding
,
J.
,
Bridgeman
,
P.
, and
Williams
,
S.
,
2022
, “
A Three-Dimensional Wire-Feeding Model for Heat and Metal Transfer, Fluid Flow, and Bead Shape in Wire Plasma Arc Additive Manufacturing
,”
J. Manuf. Processes
,
83
, pp.
300
312
.
36.
Halisch
,
C.
,
Radel
,
T.
,
Tyralla
,
D.
, and
Seefeld
,
T.
,
2020
, “
Measuring the Melt Pool Size in a Wire Arc Additive Manufacturing Process Using a High Dynamic Range Two-Colored Pyrometric Camera
,”
Weld World
,
64
(
8
), pp.
1349
1356
.
37.
Renwick
,
B. G.
, and
Patchett
,
B. M.
,
1976
, “
Operating Characteristics of the Submerged Arc Process
,”
Weld. J.
,
55
(
3
), p.
69
.
38.
Cao
,
Y.
,
Chen
,
C.
,
Xu
,
S.
,
Zhao
,
R.
,
Guo
,
K.
,
Hu
,
T.
,
Liao
,
H.
,
Wang
,
J.
, and
Ren
,
Z.
,
2024
, “
Machine Learning Assisted Prediction and Optimization of Mechanical Properties for Laser Powder Bed Fusion of Ti6Al4V Alloy
,”
Addit. Manuf.
,
91
, p.
104341
.
39.
Ogborn
,
J. S.
,
1993
, “Submerged Arc Welding,”
Welding, Brazing, and Soldering
,
D. L.
Olson
,
T. A.
Siewert
,
S.
Liu
, and
G. R.
Edwards
, eds.,
ASM International
,
Novelty, OH
, pp.
202
209
.
40.
ESAB
,
2008
,
Submerged Arc Welding
,
ESAB
.
41.
Ahmed
,
Z.
, and
Saadoon
,
A.
,
2015
, “
Optimisation Process Parameters of Submerged Arc Welding Using Taguchi Method
,”
Int. J. Eng. Adv. Technol.
,
5
, pp.
149
152
.
42.
Vishwakarma
,
S.
, and
Dwivedi
,
V. K.
,
2021
, “
Optimization of Process Parameters of Submerged Arc Welding by Taguchi Method
,”
Mater. Today: Proc.
,
47
, pp.
7067
7072
.
43.
Long
,
X.
,
Guo
,
Y.
,
Su
,
Y.
,
Siow
,
K. S.
, and
Chen
,
C.
,
2023
, “
Unveiling the Damage Evolution of SAC305 During Fatigue by Entropy Generation
,”
Int. J. Mech. Sci.
,
244
, p.
108087
.
44.
Chandel
,
R. S.
,
Seow
,
H. P.
, and
Cheong
,
F. L.
,
1997
, “
Effect of Increasing Deposition Rate on the Bead Geometry of Submerged Arc Welds
,”
J. Mater. Process. Technol.
,
72
(
1
), pp.
124
128
.
45.
Yang
,
W.
,
Jiang
,
X.
,
Tian
,
X.
,
Hou
,
H.
, and
Zhao
,
Y.
,
2023
, “
Phase-Field Simulation of Nano-α′ Precipitates Under Irradiation and Dislocations
,”
J. Mater. Res. Technol.
,
22
, pp.
1307
1321
.
46.
Fu
,
J.
,
Zhang
,
L.
,
Wang
,
H.
,
Zhao
,
Y.
,
Yang
,
X.
,
Zhang
,
J.
,
Chen
,
Z.
,
Cao
,
Y.
,
Liu
,
B.
, and
Li
,
X.
,
2024
, “
Microstructure and Mechanical Properties of WC-12Co Cemented Carbide Fabricated by Laser Powder Bed Fusion on a WC-20Co Cemented Carbide Substrate
,”
J. Mater. Res. Technol.
,
30
, pp.
9093
9101
.
You do not currently have access to this content.