Abstract

Various remaining useful life (RUL) prediction methods, encompassing model-based, data-driven, and hybrid methods, have been developed and successfully applied to prognostics and health management for diverse rolling bearing. Hybrid methods that integrate the merits of model-based and data-driven methods have garnered significant attention. However, the effective integration of the two methods to address the randomness in rolling bearing full life cycle processes remains a significant challenge. To overcome the challenge, this paper proposes a data and model synergy-driven RUL prediction framework that includes two data and model synergy strategies. First, a convolutional stacked bidirectional long short-term memory network with temporal attention mechanism is established to construct Health Index (HI). The RUL prediction is achieved based on HI and polynomial model. Second, a three-phase degradation model based on the Wiener process is developed by considering the evolutionary pattern of different degradation phases. Then, two synergy strategies are designed. Strategy 1: HI is adopted as the observation value for online updating of physics degradation model parameters under Bayesian framework, and the RUL prediction results are obtained from the physics degradation model. Strategy 2: The RUL prediction results from the data-driven and physics-based model are weighted linearly combined to improve the overall prediction accuracy. The effectiveness of the proposed model is verified using two bearing full life cycle datasets. The results indicate that the proposed approach can accommodate both short-term and long-term RUL predictions, outperforming state-of-the-art single models.

References

1.
Wang
,
X.
,
Cui
,
L.
, and
Wang
,
H.
,
2022
, “
Remaining Useful Life Prediction of Rolling Element Bearings Based on Hybrid Drive of Data and Model
,”
IEEE Sens. J.
,
22
(
17
), pp.
16985
16993
.
2.
Cubillo
,
A.
,
Perinpanayagam
,
S.
, and
Esperon-Miguez
,
M.
,
2016
, “
A Review of Physics-Based Models in Prognostics: Application to Gears and Bearings of Rotating Machinery
,”
Adv. Mech. Eng.
,
8
(
8
), pp.
1
21
.
3.
Li
,
X.
,
Liu
,
X.
,
Yue
,
C.
,
Wang
,
L.
, and
Liang
,
S. Y.
,
2024
, “
Data-Model Linkage Prediction of Tool Remaining Useful Life Based on Deep Feature Fusion and Wiener Process
,”
J. Manuf. Syst.
,
73
, pp.
19
38
.
4.
Cohen
,
J.
,
Jiang
,
B.
, and
Ni
,
J.
,
2022
, “
Machine Learning for Diagnosis of Event Synchronization Faults in Discrete Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071006
.
5.
Zhu
,
Y.
,
Cheng
,
J.
,
Liu
,
Z.
,
Cheng
,
Q.
,
Zou
,
X.
,
Xu
,
H.
,
Wang
,
Y.
, and
Tao
,
F.
,
2023
, “
Production Logistics Digital Twins: Research Profiling, Application, Challenges and Opportunities
,”
Rob. Comput. Integr. Manuf.
,
84
, p.
102592
.
6.
Lv
,
S.
,
Liu
,
S.
,
Li
,
H.
,
Wang
,
Y.
,
Liu
,
G.
, and
Dai
,
W.
,
2024
, “
A Hybrid Method Combining Lévy Process and Neural Network for Predicting Remaining Useful Life of Rotating Machinery
,”
Adv. Eng. Inform.
,
61
, p.
102490
.
7.
Xue
,
K.
,
Yang
,
J.
,
Yang
,
M.
, and
Wang
,
D.
,
2023
, “
An Improved Generic Hybrid Prognostic Method for RUL Prediction Based on PF-LSTM Learning
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
21
.
8.
Koksal
,
E. S.
, and
Aydin
,
E.
,
2023
, “
Physics Informed Piecewise Linear Neural Networks for Process Optimization
,”
Comput. Chem. Eng.
,
174
, pp.
1
12
.
9.
Daw
,
A.
,
Karpatne
,
A.
,
Watkins
,
W. D.
,
Read
,
J. S.
, and
Kumar
,
V.
,
2022
, “Physics-Guided Neural Networks (PGNN): An Application in Lake Temperature Modeling,”
Knowledge Guided Machine Learning
,
Chapman and Hall/CRC
,
Boca Raton, FL
, pp.
353
372
.
10.
Lu
,
Z.
,
Guo
,
C.
,
Liu
,
M.
, and
Shi
,
R.
,
2023
, “
Remaining Useful Lifetime Estimation for Discrete Power Electronic Devices Using Physics-Informed Neural Network
,”
Sci. Rep.
,
13
(
1
), p.
10167
.
11.
Yang
,
S.
,
Tang
,
B.
,
Wang
,
W.
,
Yang
,
Q.
, and
Hu
,
C.
,
2024
, “
Physics-Informed Multi-state Temporal Frequency Network for RUL Prediction of Rolling Bearings
,”
Reliab. Eng. Syst. Safety
,
242
, p.
109716
.
12.
Liao
,
X.
,
Chen
,
S.
,
Wen
,
P.
, and
Zhao
,
S.
,
2023
, “
Remaining Useful Life With Self-attention Assisted Physics-Informed Neural Network
,”
Adv. Eng. Inform.
,
58
, p.
102195
.
13.
Li
,
H.
,
Zhang
,
Z.
,
Li
,
T.
, and
Si
,
X.
,
2024
, “
A Review on Physics-Informed Data-Driven Remaining Useful Life Prediction: Challenges and Opportunities
,”
Mech. Syst. Signal Process.
,
209
, p.
111120
.
14.
Fernández
,
J.
,
Chiachío
,
J.
,
Chiachío
,
M.
,
Barros
,
J.
, and
Corbetta
,
M.
,
2023
, “
Physics-Guided Bayesian Neural Networks by ABC-SS: Application to Reinforced Concrete Columns
,”
Eng. Appl. Artif. Intell.
,
119
, p.
105790
.
15.
Yucesan
,
Y. A.
, and
Viana
,
F. A.
,
2021
, “
Hybrid Physics-Informed Neural Networks for Main Bearing Fatigue Prognosis With Visual Grease Inspection
,”
Comput. Ind.
,
125
, p.
103386
.
16.
Yucesan
,
Y. A.
, and
Viana
,
F.
,
2020
, “
A Hybrid Model for Wind Turbine Main Bearing Fatigue With Uncertainty in Grease Observations
,”
Annual Conference of the PHM Society
, Vol. 12, No. 1, pp.
14
14
.
17.
Liao
,
L.
, and
Köttig
,
F.
,
2016
, “
A Hybrid Framework Combining Data-Driven and Model-Based Methods for System Remaining Useful Life Prediction
,”
Appl. Soft. Comput.
,
44
, pp.
191
199
.
18.
Dourado
,
A.
, and
Viana
,
F. A.
,
2020
, “
Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061007
.
19.
Luo
,
W.
,
Hu
,
T.
,
Ye
,
Y.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2020
, “
A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin
,”
Rob. Comput. Integr. Manuf.
,
65
, p.
101974
.
20.
Abbasi
,
A.
, and
Nataraj
,
C.
,
2022
, “
Physics-Informed Machine Learning for Uncertainty Reduction in Time Response Reconstruction of a Dynamic System
,”
IEEE Internet Comput.
,
26
(
4
), pp.
35
44
.
21.
Wang
,
Z.
,
Ta
,
Y.
,
Cai
,
W.
, and
Li
,
Y.
,
2023
, “
Research on a Remaining Useful Life Prediction Method for Degradation Angle Identification Two-Stage Degradation Process
,”
Mech. Syst. Signal Process.
,
184
, p.
109747
.
22.
Cai
,
X.
,
Li
,
N.
, and
Xie
,
M.
,
2024
, “
RUL Prediction for Two-Phase Degrading Systems Considering Physical Damage Observations
,”
Reliab. Eng. Syst. Safety
,
244
, p.
109926
.
23.
Wang
,
B.
,
Lei
,
Y.
,
Li
,
N.
, and
Li
,
N.
,
2018
, “
A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings
,”
IEEE Trans. Reliab.
,
69
(
1
), pp.
401
412
.
24.
Nextoux
,
P.
,
Gouriveau
,
R.
,
Medjaher
,
K.
,
Ramasso
,
E.
,
Chebel-Morello
,
B.
,
Zerhouni
,
N.
, and
Varnier
,
C.
,
2012
, “
PRONOSTIA: An Experimental Platform for Bearings Accelerated Life Test
,”
Proc. IEEE Int. Conf. Prognostics Health Manage
, pp.
1
8
.
25.
Liao
,
G.
,
Yin
,
H.
,
Chen
,
M.
, and
Lin
,
Z.
,
2021
, “
Remaining Useful Life Prediction for Multi-phase Deteriorating Process Based on Wiener Process
,”
Reliab. Eng. Syst. Safety
,
207
, pp.
107361
.
26.
Dixit
,
Y.
, and
Kulkarni
,
M. S.
,
2024
, “
Simulation Based Approach for Reliability and Remaining Useful Life Estimation of Spur Gear Pair Under Non-Markov and Non-stationary Load Transitions
,”
Comput. Ind. Eng.
,
190
, p.
110026
.
27.
Keshun
,
Y.
,
Guangqi
,
Q.
, and
Yingkui
,
G.
,
2023
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Using EM-PF-SSA-SVR With Gamma Stochastic Process
,”
Meas. Sci. Technol.
,
35
(
1
), p.
015015
.
28.
Zheng
,
X.
,
Fan
,
W.
,
Chen
,
C.
, and
Peng
,
Z.
,
2024
, “
Adaptive Two-Stage Model for Bearing Remaining Useful Life Prediction Using Gaussian Process Regression With Matched Kernels
,”
IEEE. Trans. Reliab.
, pp.
1
9
.
29.
Zhang
,
S.
,
Zhai
,
Q.
,
Shi
,
X.
, and
Liu
,
X.
,
2022
, “
A Wiener Process Model With Dynamic Covariate for Degradation Modeling and Remaining Useful Life Prediction
,”
IEEE Trans. Reliab.
,
72
(
1
), pp.
214
223
.
30.
Xu
,
X.
,
Tang
,
S.
,
Yu
,
C.
,
Xie
,
J.
,
Han
,
X.
, and
Ouyang
,
M.
,
2021
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition
,”
Reliab. Eng. Syst. Safety
,
214
, p.
107675
.
31.
Guan
,
Q.
,
Wei
,
X.
,
Zhang
,
H.
, and
Jia
,
L.
,
2024
, “
Remaining Useful Life Prediction for Degradation Processes Based on the Wiener Process Considering Parameter Dependence
,”
Qual. Reliab. Eng. Int.
,
40
(
3
), pp.
1221
1245
.
32.
Wu
,
B.
,
Zeng
,
J.
,
Shi
,
H.
,
Zhang
,
X.
,
Shi
,
G.
, and
Qin
,
Y.
,
2022
, “
Multi-sensor Information Fusion-Based Prediction of Remaining Useful Life of Nonlinear Wiener Process
,”
Meas. Sci. Technol.
,
33
(
10
), p.
105106
.
33.
Lin
,
W.
,
Chai
,
Y.
,
Fan
,
L.
, and
Zhang
,
K.
,
2024
, “
Remaining Useful Life Prediction Using Nonlinear Multi-phase Wiener Process and Variational Bayesian Approach
,”
Reliab. Eng. Syst. Safety
,
242
, p.
109800
.
34.
Lin
,
J.
,
Liao
,
G.
,
Chen
,
M.
, and
Yin
,
H.
,
2021
, “
Two-Phase Degradation Modeling and Remaining Useful Life Prediction Using Nonlinear Wiener Process
,”
Comput. Ind. Eng.
,
160
, p.
107533
.
35.
Liu
,
S.
, and
Fan
,
L.
,
2022
, “
An Adaptive Prediction Approach for Rolling Bearing Remaining Useful Life Based on Multistage Model With Three-Source Variability
,”
Reliab. Eng. Syst. Safety
,
218
, p.
108182
.
36.
Chen
,
Z.
,
Xia
,
T.
,
Li
,
Y.
, and
Pan
,
E.
,
2021
, “
A Hybrid Prognostic Method Based on Gated Recurrent Unit Network and an Adaptive Wiener Process Model Considering Measurement Errors
,”
Mech. Syst. Signal Process.
,
158
, p.
107785
.
37.
Guan
,
Q.
, and
Wei
,
X.
,
2023
, “
The Statistical Data-Driven Remaining Useful Life Prediction—A Review on the Wiener Process-Based Method
,”
Proceedings of the 2023 Prognostics and Health Management Conference (PHM)
,
Paris, France
,
May 31–Jun. 2
, pp.
64
68
.
38.
Ferreira
,
C.
, and
Gonçalves
,
G.
,
2022
, “
Remaining Useful Life Prediction and Challenges: A Literature Review on the Use of Machine Learning Methods
,”
J. Manuf. Syst.
,
63
, pp.
550
562
.
39.
Pan
,
Y.
,
Hong
,
R.
,
Chen
,
J.
, and
Wu
,
W.
,
2020
, “
A Hybrid DBN-SOM-PF-Based Prognostic Approach of Remaining Useful Life for Wind Turbine Gearbox
,”
Renew. Energy
,
152
, pp.
138
154
.
40.
Schwendemann
,
S.
,
Rausch
,
A.
, and
Sikora
,
A.
,
2024
, “
A Hybrid Predictive Maintenance Solution for Fault Classification and Remaining Useful Life Estimation of Bearings Using Low-Cost Sensor Hardware
,”
Procedia Comput. Sci.
,
232
, pp.
128
138
.
41.
Guo
,
J.
,
Wang
,
J.
,
Wang
,
Z.
,
Gong
,
Y.
,
Qi
,
J.
,
Wang
,
G.
, and
Tang
,
C.
,
2023
, “
A CNN-BiLSTM-Bootstrap Integrated Method for Remaining Useful Life Prediction of Rolling Bearings
,”
Qual. Reliab. Eng. Int.
,
39
(
5
), pp.
1796
1813
.
42.
Yu
,
W.
,
Kim
,
I. Y.
, and
Mechefske
,
C.
,
2021
, “
Analysis of Different RNN Autoencoder Variants for Time Series Classification and Machine Prognostics
,”
Mech. Syst. Signal Process.
,
149
, p.
107322
.
43.
Zhang
,
X.
,
Shi
,
B.
,
Feng
,
B.
,
Liu
,
L.
, and
Gao
,
Z.
,
2023
, “
A Hybrid Method for Cutting Tool RUL Prediction Based on CNN and Multistage Wiener Process Using Small Sample Data
,”
Measurement
,
213
, p.
112739
.
44.
Luo
,
J.
,
Huang
,
J.
, and
Li
,
H.
,
2021
, “
A Case Study of Conditional Deep Convolutional Generative Adversarial Networks in Machine Fault Diagnosis
,”
J. Intell. Manuf.
,
32
(
2
), pp.
407
425
.
45.
Zhang
,
J. X.
,
Hu
,
C. H.
,
He
,
X.
,
Si
,
X. S.
,
Liu
,
Y.
, and
Zhou
,
D. H.
,
2018
, “
A Novel Lifetime Estimation Method for Two-Phase Degrading Systems
,”
IEEE Trans. Reliab.
,
68
(
2
), pp.
689
709
.
46.
Si
,
X. S.
,
Wang
,
W.
,
Hu
,
C. H.
,
Zhou
,
D. H.
, and
Pecht
,
M. G.
,
2012
, “
Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process
,”
IEEE Trans. Reliab.
,
61
(
1
), pp.
50
67
.
47.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
48.
Traini
,
E.
,
Bruno
,
G.
, and
Lombardi
,
F.
,
2021
, “Design of a Physics-Based and Data-Driven Hybrid Model for Predictive Maintenance,”
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology
,
A.
Dolgui
,
A.
Bernard
,
D.
Lemoine
,
G.
von Cieminski
, and
D.
Romero
, eds.,
Springer
,
Cham
, pp.
536
543
.
49.
Liao
,
L.
, and
Köttig
,
F.
,
2014
, “
Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction
,”
IEEE Trans. Reliab.
,
63
(
1
), pp.
191
207
.
You do not currently have access to this content.