Abstract

Additive manufacturing (AM) enables new possibilities for the design and manufacturing of complex metal architectures. Incorporating lattice structures into complex part geometries can enhance strength-to-weight and surface area-to-volume ratios for valuable components, particularly in industries such as medical devices and aerospace. However, lattice structures and their interconnections may result in unsupported down-skin surfaces, potentially limiting their manufacturability by metal AM technologies, such as laser powder bed fusion (LPBF). This study aimed to examine the correlation between down-skin surface area and the manufacturability of lattice structures fabricated using LPBF. Image processing algorithms were used to analyze down-skin surface areas of seven unique lattice designs and to devise quantitative metrics (such as down-skin surface area, discrete surface count, surface interconnectivity, down-skin ratio, over-print/under-print volumes, etc.) to evaluate LPBF manufacturability. The seven lattice designs were subsequently manufactured using maraging steel via LPBF and then examined using imaging using X-ray micro-computed tomography (XCT). The geometric accuracy of the lattice designs was compared with XCT scans of the manufactured lattices by employing a voxel-based image comparison technique. The results indicated a strong relationship between down-skin surface area, surface interconnectivity, and the manufacturability of a given lattice design. The digital manufacturability evaluation workflow was also applied to a medical device design, further affirming its potential industrial utility for complex geometries.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gardan
,
J.
,
2019
, “
Smart Materials in Additive Manufacturing: State of the Art and Trends
,”
Virtual Phys. Prototyp.
,
14
(
1
), pp.
1
18
.
2.
Rosen
,
D. W.
,
2014
, “
Research Supporting Principles for Design for Additive Manufacturing: This Paper Provides a Comprehensive Review on Current Design Principles and Strategies for AM
,”
Virtual Phys. Prototyp.
,
9
(
4
), pp.
225
232
.
3.
Sames
,
W. J.
,
List
,
F.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
315
360
.
4.
Sing
,
S. L.
,
An
,
J.
,
Yeong
,
W. Y.
, and
Wiria
,
F. E.
,
2016
, “
Laser and Electron-Beam Powder-Bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs
,”
J. Orthop. Res.
,
34
(
3
), pp.
369
385
.
5.
McGregor
,
M.
,
Patel
,
S.
,
McLachlin
,
S.
, and
Vlasea
,
M.
,
2021
, “
Architectural Bone Parameters and the Relationship to Titanium Lattice Design for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
47
, p.
102273
.
6.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
7.
Ashby
,
A.
,
Guss
,
G.
,
Ganeriwala
,
R. K.
,
Martin
,
A. A.
,
DePond
,
P. J.
,
Deane
,
D. J.
,
Matthews
,
M. J.
, and
Druzgalski
,
C. L.
,
2022
, “
Thermal History and High-Speed Optical Imaging of Overhang Structures During Laser Powder Bed Fusion: A Computational and Experimental Analysis
,”
Addit. Manuf.
,
53
, p.
102669
.
8.
Wadley
,
H. N.
,
2006
, “
Multifunctional Periodic Cellular Metals, Philosophical Transactions of the Royal Society A: Mathematical
,”
Phys. Eng. Sci.
,
364
(
1838
), pp.
31
68
.
9.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
10.
du Plessis
,
A.
,
Razavi
,
S. M. J.
,
Benedetti
,
M.
,
Murchio
,
S.
,
Leary
,
M.
,
Watson
,
M.
,
Bhate
,
D.
, and
Berto
,
F.
,
2021
, “
Properties and Applications of Additively Manufactured Metallic Cellular Materials: A Review
,”
Prog. Mater. Sci.
,
125
, p.
100918
.
11.
Boccini
,
E.
,
Furferi
,
R.
,
Governi
,
L.
,
Meli
,
E.
,
Ridolfi
,
A.
,
Rindi
,
A.
, and
Volpe
,
Y.
,
2019
, “
Toward the Integration of Lattice Structure-Based Topology Optimization and Additive Manufacturing for the Design of Turbomachinery Components
,”
Adv. Mech. Eng.
,
11
(
8
), p.
1687814019859789
.
12.
Zhang
,
C.
,
Wang
,
S.
,
Li
,
J.
,
Zhu
,
Y.
,
Peng
,
T.
, and
Yang
,
H.
,
2020
, “
Additive Manufacturing of Products With Functional Fluid Channels: A Review
,”
Addit. Manuf.
,
36
, p.
101490
.
13.
Patel
,
S.
,
McGregor
,
M.
,
McLachlin
,
S.
, and
Vlasea
,
M.
,
2021
, “
Digital Manufacturing Challenge: Rapid Deployment of Patient-Specific Prosthesis in Emergency Medicine Enabled by Additive Manufacturing
,”
Manuf. Eng.
,
116
(
12
), pp.
9
11
.
14.
Calignano
,
F.
,
2014
, “
Design Optimization of Supports for Overhanging Structures in Aluminum and Titanium Alloys by Selective Laser Melting
,”
Mater. Des.
,
64
, pp.
203
213
.
15.
Triantaphyllou
,
A.
,
Giusca
,
C. L.
,
Macaulay
,
G. D.
,
Roerig
,
F.
,
Hoebel
,
M.
,
Leach
,
R. K.
,
Tomita
,
B.
, and
Milne
,
K. A.
,
2015
, “
Surface Texture Measurement for Additive Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
2
), p.
024002
.
16.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Procedia CIRP
,
45
, pp.
131
134
.
17.
Chen
,
H.
,
Gu
,
D.
,
Xiong
,
J.
, and
Xia
,
M.
,
2017
, “
Improving Additive Manufacturing Processability of Hard-to-Process Overhanging Structure by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
250
, pp.
99
108
.
18.
Mulhi
,
A.
,
Dehgahi
,
S.
,
Waghmare
,
P.
, and
Qureshi
,
A.
,
2022
, “
Dimensional Assessment of Uniformly Periodic Porosity Primitive TPMS Lattices Using Additive Manufacturing Laser Powder Bed Fusion Technique
,”
Int. J. Adv. Manuf. Technol.
,
124
(
7–8
), pp.
1
22
.
19.
Echeta
,
I.
,
Feng
,
X.
,
Dutton
,
B.
,
Leach
,
R.
, and
Piano
,
S.
,
2020
, “
Review of Defects in Lattice Structures Manufactured by Powder Bed Fusion
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5–6
), pp.
2649
2668
.
20.
Wang
,
D.
,
Yang
,
Y.
,
Yi
,
Z.
, and
Su
,
X.
,
2013
, “
Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9
), pp.
1471
1484
.
21.
Charles
,
A.
,
Elkaseer
,
A.
,
Paggi
,
U.
,
Thijs
,
L.
,
Hagenmeyer
,
V.
, and
Scholz
,
S.
,
2021
, “
Down-Facing Surfaces in Laser Powder Bed Fusion of Ti6Al4V: Effect of Dross Formation on Dimensional Accuracy and Surface Texture
,”
Addit. Manuf.
,
46
, p.
102148
.
22.
Viale
,
V.
,
Stavridis
,
J.
,
Salmi
,
A.
,
Bondioli
,
F.
, and
Saboori
,
A.
,
2022
, “
Optimisation of Downskin Parameters to Produce Metallic Parts via Laser Powder Bed Fusion Process: An Overview
,”
Int. J. Adv. Manuf. Technol.
,
123
(
7–8
), pp.
2159
2182
23.
Yeung
,
H.
,
Lane
,
B.
, and
Fox
,
J.
,
2019
, “
Part Geometry and Conduction-Based Laser Power Control for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100844
.
24.
Shange
,
M.
,
Yadroitsava
,
I.
,
du Plessis
,
A.
, and
Yadroitsev
,
I.
,
2021
, “
Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion
,”
3D Print. Addit. Manuf.
,
9
(
4
), pp.
288
300
25.
Cabanettes
,
F.
,
Joubert
,
A.
,
Chardon
,
G.
,
Dumas
,
V.
,
Rech
,
J.
,
Grosjean
,
C.
, and
Dimkovski
,
Z.
,
2018
, “
Topography of as Built Surfaces Generated in Metal Additive Manufacturing: A Multi Scale Analysis From Form to Roughness
,”
Precis. Eng.
,
52
, pp.
249
265
.
26.
Almalki
,
A.
,
Downing
,
D.
,
Noronha
,
J.
,
Dash
,
J.
,
Lozanovski
,
B.
,
Tino
,
R.
,
Alghamdi
,
A.
,
Khorasani
,
M.
,
Qian
,
M.
,
Brandt
,
M.
, et al
,
2023
, “
The Effect of Geometric Design and Materials on Section Properties of Additively Manufactured Lattice Elements
,”
Int. J. Adv. Manuf. Technol.
,
126
(
7–8
), pp.
3555
3577
.
27.
Meyer
,
G.
,
Musekamp
,
J.
,
Göbel
,
F.
,
Gardian
,
F.
, and
Mittelstedt
,
C.
,
2022
, “
Manufacturability Investigation of Inclined alsi10mg Lattice Struts by Means of Selective Laser Melting
,”
Manuf. Lett.
,
31
, pp.
101
105
.
28.
Klingaa
,
C. G.
,
Bjerre
,
M. K.
,
Baier
,
S.
,
De Chiffre
,
L.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Roughness Investigation of SLM Manufactured Conformal Cooling Channels Using X-Ray Computed Tomography
,”
Proceedings of the 9th Conference on Industrial Computed Tomography (ICT 2019)
,
Padova, Italy
,
Feb. 13–15
.
29.
Puttonen
,
T.
,
2020
, “
Evaluation of Metal Lattice Structures With X-Ray Micro-Computed Tomography: Dimensional Accuracy and Manufacturability
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Virtual Online
,
Nov. 16–19
.
30.
Tanlak
,
N.
,
De Lange
,
D. F.
, and
Van Paepegem
,
W.
,
2017
, “
Numerical Prediction of the Printable Density Range of Lattice Structures for Additive Manufacturing
,”
Mater. Des.
,
133
, pp.
549
558
.
31.
Lozanovski
,
B.
,
Downing
,
D.
,
Tino
,
R.
,
Tran
,
P.
,
Shidid
,
D.
,
Emmelmann
,
C.
,
Qian
,
M.
,
Choong
,
P.
,
Brandt
,
M.
, and
Leary
,
M.
,
2021
, “
Image-Based Geometrical Characterization of Nodes in Additively Manufactured Lattice Structures
,”
3D Print. Addit. Manuf.
,
8
(
1
), pp.
51
68
.
32.
Alrbaey
,
K.
,
Wimpenny
,
D.
,
Tosi
,
R.
,
Manning
,
W.
, and
Moroz
,
A.
,
2014
, “
On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
2139
2148
.
33.
Covarrubias
,
E. E.
, and
Eshraghi
,
M.
,
2018
, “
Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting
,”
JOM
,
70
(
3
), pp.
336
342
.
34.
Zhang
,
J.
,
Chaudhari
,
A.
, and
Wang
,
H.
,
2019
, “
Surface Quality and Material Removal in Magnetic Abrasive Finishing of Selective Laser Melted 316l Stainless Steel
,”
J. Manuf. Process.
,
45
, pp.
710
719
.
35.
Tarakçı
,
G.
,
Khan
,
H. M.
,
Yılmaz
,
M. S.
, and
Özer
,
G.
,
2022
, “
Effect of Building Orientations and Heat Treatments on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties, Fracture Mechanism and Corrosion Behavior
,”
Rapid Prototyp. J.
,
28
(
8
), pp.
1609
1621
.
36.
Patel
,
S.
,
Rogalsky
,
A.
, and
Vlasea
,
M.
,
2020
, “
Towards Understanding Side-Skin Surface Characteristics in Laser Powder Bed Fusion
,”
J. Mater. Res.
,
35
(
15
), pp.
2055
2064
.
37.
Wei
,
L. C.
,
Ehrlich
,
L. E.
,
Powell-Palm
,
M. J.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Malen
,
J. A.
,
2018
, “
Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
201
208
.
38.
Wischeropp
,
T. M.
,
Emmelmann
,
C.
,
Brandt
,
M.
, and
Pateras
,
A.
,
2019
, “
Measurement of Actual Powder Layer Height and Packing Density in a Single Layer in Selective Laser Melting
,”
Addit. Manuf.
,
28
, pp.
176
183
.
39.
Jones
,
A.
,
Leary
,
M.
,
Bateman
,
S.
, and
Easton
,
M.
,
2021
, “
Effect of Surface Geometry on Laser Powder Bed Fusion Defects
,”
J. Mater. Process. Technol.
,
296
, p.
117179
.
40.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
41.
Zhang
,
Z.-D.
,
Ibhadode
,
O.
,
Ali
,
U.
,
Dibia
,
C. F.
,
Rahnama
,
P.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2020
, “
Topology Optimization Parallel-Computing Framework Based on the Inherent Strain Method for Support Structure Design in Laser Powder-Bed Fusion Additive Manufacturing
,”
Int. J. Mech. Mater. Des.
,
16
(
4
), pp.
897
923
.
42.
Khobzi
,
A.
,
Mehr
,
F. F.
,
Cockcroft
,
S.
,
Maijer
,
D.
,
Sing
,
S. L.
, and
Yeong
,
W. Y.
,
2022
, “
The Role of Block-Type Support Structure Design on the Thermal Field and Deformation in Components Fabricated by Laser Powder Bed Fusion
,”
Addit. Manuf.
,
51
, p.
102644
.
43.
Liu
,
Y.
,
Yang
,
Y.
, and
Wang
,
D.
,
2017
, “
Investigation Into the Shrinkage in Z-Direction of Components Manufactured by Selective Laser Melting (SLM)
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
2913
2923
.
44.
Veetil
,
J. K.
,
Khorasani
,
M.
,
Ghasemi
,
A.
,
Rolfe
,
B.
,
Vrooijink
,
I.
,
Van Beurden
,
K.
,
Moes
,
S.
, and
Gibson
,
I.
,
2021
, “
Build Position-Based Dimensional Deviations of Laser Powder-Bed Fusion of Stainless Steel 316l
,”
Precis. Eng.
,
67
, pp.
58
68
.
45.
Chahal
,
V.
, and
Taylor
,
R. M.
,
2020
, “
A Review of Geometric Sensitivities in Laser Metal 3d Printing
,”
Virtual Phys. Prototyp.
,
15
(
2
), pp.
227
241
.
46.
Zhang
,
L.
,
Li
,
Y.
, and
Zhu
,
H.
,
2022
, “
Prediction and Optimization of Dimensional Accuracy of Inclined Structures Fabricated by Laser Powder Bed Fusion
,”
J. Manuf. Process.
,
81
, pp.
281
289
.
47.
Taib
,
Z. M.
,
Harun
,
W. S. W.
,
Ghani
,
S. A. C.
,
Rashid
,
M.
,
Omar
,
M. A.
, and
Ramli
,
H.
,
2016
, “
Dimensional Accuracy Study of Open Cellular Structure CoCrMo Alloy Fabricated by Selective Laser Melting Process
,”
Adv. Mater. Res.
,
1133
, p.
280
284
.
You do not currently have access to this content.