Abstract

The evolution of high-performance computing facilitates the simulation of manufacturing processes. The prediction accuracy of a numerical model of the cutting process is closely associated with the selection of constitutive and friction models. The reliability and the accuracy of these models highly depend on the value of the parameters involved in the definition of the cutting process. Direct of inverse methods are used to determine these model parameters. However, these identification procedures often neglect the link between the parameters of the material and the friction models. This article introduces a novel approach to inversely identify the best parameters value for both models at the same time and by taking into account multiple cutting conditions in the optimization routine. An artificial intelligence (AI) framework that combines the finite element modeling with an adaptive Bayesian multi-objective evolutionary algorithm (AB-MOEA) is developed, where the objective is to minimize the deviation between the experimental and the numerical results. The arbitrary Lagrangian–Eulerian (ALE) formulation and the Ti6Al4V alloy are selected to demonstrate its applicability. The investigation shows that the developed AI platform can identify the best parameters values with low computational time and resources. The identified parameters values predicted the cutting and feed forces within a deviation of less than 4% from the experiments for all the cutting conditions considered in this work.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Altintas
,
Y.
, and
Ber
,
A.
,
2001
, “
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and Cnc Design
,”
ASME Appl. Mech. Rev.
,
54
(
5
), pp.
B84
B84
.
2.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
, pp.
267
275
.
3.
Wang
,
S.
,
Tao
,
Z.
,
Wenping
,
D.
,
Zhanwen
,
S.
, and
To
,
S.
,
2022
, “
Analytical Modeling and Prediction of Cutting Forces in Orthogonal Turning: A Review
,”
Int. J. Adv. Manuf. Technol.
,
119
, pp.
1407
1434
.
4.
Tsekhanov
,
J.
, and
Storchak
,
M.
,
2015
, “
Development of Analytical Model for Orthogonal Cutting
,”
Prod. Eng.
,
9
(
2
), pp.
247
255
.
5.
Markopoulos
,
A.
,
2012
,
Finite Element Method in Machining Processes
,
ASM
,
Materials Park, OH
.
6.
Arrazola
,
P.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
695
718
.
7.
Arrazola
,
P.
,
Ugarte
,
D.
,
Montoya
,
J.
,
Villar
,
A.
, and
Marya
,
S.
,
2005
, “
Finite Element Modeling of Chip Formation Process with Abaqus/Explicit 6.3
,”
Proceedings of VII International Conference on Computational Plasticity
,
Barcelona, Spain
.
8.
Furrer
,
D.
, and
Semiatin
,
S.
,
2010
,
Metals Process Simulation
,
ASM International
,
Materials Park, OH
.
9.
Fang
,
N.
, and
Jawahir
,
I.
,
2002
, “
Analytical Predictions and Experimental Validation of Cutting Force Ratio, Chip Thickness, and Chip Back-Flow Angle in Restricted Contact Machining Using the Universal Slip-Line Model
,”
Int. J. Mach. Tools. Manuf.
,
42
(
6
), pp.
681
694
.
10.
Komvopoulos
,
K.
, and
Erpenbeck
,
S.
,
1991
, “
Finite Element Modeling of Orthogonal Metal Cutting
,”
J. Eng. Ind.
,
113
(
3
), pp.
253
267
.
11.
Melkote
,
S.
,
Grzesik
,
W.
,
Outeiro
,
J.
,
Rech
,
J.
,
Schulze
,
V.
,
Attia
,
H.
,
Arrazola
,
P.
,
M’Saoubi
,
R.
, and
Saldana
,
C.
,
2017
, “
Advances in Material and Friction Data for Modelling of Metal Machining
,”
CIRP Ann. - Manuf. Technol.
,
66
(
2
), pp.
731
754
.
12.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2016
, “
Application of the Coupled Eulerian-Lagrangian (CEL) Method to the Modeling of Orthogonal Cutting
,”
Eur. J. Mech. - A/Solids
,
59
, pp.
58
66
.
13.
Ducobu
,
F.
,
Arrazola
,
P.-J.
,
Rivière-Lorphèvre
,
E.
,
de Zarate
,
G. O.
,
Madariaga
,
A.
, and
Filippi
,
E.
,
2017
, “
The CEL Method as an Alternative to the Current Modelling Approaches for Ti6al4v Orthogonal Cutting Simulation
,”
Procedia CIRP
,
58
, pp.
245
250
.
14.
Childs
,
T. H. C.
,
1998
, “
Material Property Needs in Modeling Metal Machining
,”
Mach. Sci. Technol.
,
2
(
2
), pp.
303
316
.
15.
Kugalur-Palanisamy
,
N.
,
Rivière-Lorphèvre
,
E.
,
Arrazola
,
P. J.
, and
Ducobu
,
F.
,
2019
, “
Comparison of Johnson-Cook and Modified Johnson-Cook Material Constitutive Models and Their Influence on Finite Element Modelling of Ti6Al4V Orthogonal Cutting Process
,”
22nd International ESAFORM Conference on Material Forming, ESAFORM 2019
,
Vitoria-Gasteiz, Spain
.
16.
Kugalur-Palanisamy
,
N.
,
Rivière-Lorphèvre
,
E.
,
Arrazola
,
P. J.
, and
Ducobu
,
F.
,
2022
, “
Influence of Coulomb’s Friction Coefficient in Finite Element Modeling of Orthogonal Cutting of Ti6Al4V
,”
Key. Eng. Mater.
,
926
(
2
), p.
1619
.
17.
Childs
,
T.
,
2006
, “
Friction Modelling in Metal Cutting
,”
Wear
,
260
(
3
), pp.
310
318
.
18.
Arrazola
,
P. J.
, and
Özel
,
T.
,
2010
, “
Investigations on the Effects of Friction Modeling in Finite Element Simulation of Machining
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
31
42
.
19.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2017
, “
On the Importance of the Choice of the Parameters of the Johnson-Cook Constitutive Model and Their Influence on the Results of a Ti6Al4v Orthogonal Cutting Model
,”
Int. J. Mech. Sci.
,
122
, pp.
143
155
.
20.
Kugalur Palanisamy
,
N.
,
Rivière Lorphèvre
,
E.
,
Arrazola
,
P.-J.
, and
Ducobu
,
F.
,
2021
, “
Influence of Constitutive Models and the Choice of the Parameters on Fe Simulation of Ti6al4v Orthogonal Cutting Process for Different Uncut Chip Thicknesses
,”
J. Manuf. Mater. Process.
,
5
(
2
), p.
56
.
21.
Chandrasekaran
,
H.
,
M’Saoubi
,
R.
, and
Chazal
,
H.
,
2005
, “
Modelling of Material Flow Stress in Chip Formation Process From Orthogonal Milling and Split Hopkinson Bar Tests
,”
Mach. Sci. Technol.
,
9
(
1
), pp.
131
145
.
22.
Özel
,
T.
, and
Altan
,
T.
,
2000
, “
Determination of Workpiece Flow Stress and Friction at the Chip-Tool Contact for High-Speed Cutting
,”
Int. J. Mach. Tools. Manuf.
,
40
(
1
), pp.
133
152
.
23.
Sterle
,
L.
,
Pušavec
,
F.
, and
Kalin
,
M.
,
2019
, “
Determination of Friction Coefficient in Cutting Processes: Comparison Between Open and Closed Tribometers
,”
Procedia CIRP
,
82
, pp.
101
106
.
24.
Malakizadi
,
A.
,
Hosseinkhani
,
K.
,
Mariano
,
E.
,
Ng
,
E.
,
Prete
,
A. D.
, and
Nyborg
,
L.
,
2017
, “
Influence of Friction Models on Fe Simulation Results of Orthogonal Cutting Process
,”
Int. J. Adv. Manuf. Technol.
,
88
, pp.
3217
3232
.
25.
Globocki Lakic
,
G.
,
Kramar
,
D.
, and
Kopac
,
J.
,
2014
,
Metal Cutting—Theory and Application
,
University of Banjaluka, Faculty of Mechanical Engineering; University of Ljubljana, Faculty of Mechanical Engineering
, p.
12
.
26.
de Zarate
,
G. O.
,
Madariaga
,
A.
,
Arrazola
,
P. J.
, and
Childs
,
T. H.
,
2021
, “
A Novel Methodology to Characterize Tool-Chip Contact in Metal Cutting Using Partially Restricted Contact Length Tools
,”
CIRP. Ann.
,
70
(
1
), pp.
61
64
.
27.
Özel
,
T.
, and
Karpat
,
Y.
,
2007
, “
Identification of Constitutive Material Model Parameters for High-Strain Rate Metal Cutting Conditions Using Evolutionary Computational Algorithms
,”
Mater. Manuf. Processes.
,
22
(
5
), pp.
659
667
.
28.
Chaparro
,
B.
,
Thuillier
,
S.
,
Menezes
,
L.
,
Manach
,
P.
, and
Fernandes
,
J.
,
2008
, “
Material Parameters Identification: Gradient-Based, Genetic and Hybrid Optimization Algorithms
,”
Comput. Mater. Sci.
,
44
(
2
), pp.
339
346
.
29.
Milani
,
A.
,
Dabboussi
,
W.
,
Nemes
,
J.
, and
Abeyaratne
,
R.
,
2009
, “
An Improved Multi-objective Identification of Johnson-Cook Material Parameters
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
294
302
.
30.
Klocke
,
F.
,
Lung
,
D.
,
Buchkremer
,
S.
, and
Jawahir
,
I. S.
,
2013
, “
From Orthogonal Cutting Experiments Towards Easy-to-Implement and Accurate Flow Stress Data
,”
Mater. Manuf. Processes.
,
28
(
11
), pp.
1222
1227
.
31.
Bäker
,
M.
,
2015
, “
A New Method to Determine Material Parameters From Machining Simulations Using Inverse Identification
,”
Procedia CIRP
,
31
, pp.
399
404
.
32.
Denkena
,
B.
,
Grove
,
T.
,
Dittrich
,
M.
,
Niederwestberg
,
D.
, and
Lahres
,
M.
,
2015
, “
Inverse Determination of Constitutive Equations and Cutting Force Modelling for Complex Tools Using Oxley’s Predictive Machining Theory
,”
Procedia CIRP
,
31
, pp.
405
410
.
33.
Shatla
,
M.
,
Kerk
,
C.
, and
Altan
,
T.
,
2001
, “
Process Modeling in Machining. Part I: Determination of Flow Stress Data
,”
Int. J. Mach. Tools. Manuf.
,
41
(
10
), pp.
1511
1534
.
34.
Nguyen
,
N.
, and
Hosseini
,
A.
,
2023
, “
Direct Calculation of Johnson-Cook Constitutive Material Parameters for Oblique Cutting Operations
,”
J. Manuf. Process.
,
92
, pp.
226
237
.
35.
Shrot
,
A.
, and
Baeker
,
M.
,
2011
, “
Inverse Identification of Johnson-Cook Material Parameters From Machining Simulations
,”
Adv. Mater. Res.
,
223
, pp.
277
285
. www.scientific.net/AMR.223.277
36.
Shrot
,
A.
, and
Bäker
,
M.
,
2012
, “
Determination of Johnson-Cook Parameters From Machining Simulations
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
298
304
.
37.
Bosetti
,
P.
,
Maximiliano Giorgio Bort
,
C.
, and
Bruschi
,
S.
,
2013
, “
Identification of Johnson–Cook and Tresca’s Parameters for Numerical Modeling of AISI-304 Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051021
.
38.
Franchi
,
R.
, and
Mariano
,
E.
,
2016
, “
Inverse Analysis Procedure to Determine Flow Stress and Friction Data for Metal Cutting Finite Element Modeling
,”
Key. Eng. Mater.
,
651–653
, pp.
1345
1350
. www.scientific.net/KEM.651-653.1345
39.
Bergs
,
T.
,
Hardt
,
M.
, and
Schraknepper
,
D.
,
2019
, “
Inverse Material Model Parameter Identification for Metal Cutting Simulations by Optimization Strategies
,”
MM Sci. J.
,
2019
(
80
), pp.
3172
3178
.
40.
Bergs
,
T.
,
Hardt
,
M.
, and
Schraknepper
,
D.
,
2020
, “
Determination of Johnson-Cook Material Model Parameters for AISI 1045 From Orthogonal Cutting Tests Using the Downhill-Simplex Algorithm
,”
Procedia Manuf.
,
48
, pp.
541
552
.
41.
Hardt
,
M.
,
Schraknepper
,
D.
, and
Bergs
,
T.
,
2021
, “
Investigations on the Application of the Downhill-Simplex-Algorithm to the Inverse Determination of Material Model Parameters for Fe-Machining Simulations
,”
Simul. Modell. Practice Theory
,
107
, p.
102214
.
42.
Hardt
,
M.
,
Jayaramaiah
,
D.
, and
Bergs
,
T.
,
2021
, “
On the Application of the Particle Swarm Optimization to the Inverse Determination of Material Model Parameters for Cutting Simulations
,”
Modelling
,
2
(
1
), pp.
129
148
.
43.
Hardt
,
M.
, and
Bergs
,
T.
,
2021
, “
Considering Multiple Process Observables to Determine Materialmodel Parameters for Fe-Cutting Simulations
,”
Int. J. Adv. Manuf. Technol.
,
113
, pp.
3419
3431
.
44.
Arrazola
,
P.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP. Ann.
,
62
(
2
), pp.
695
718
.
45.
Kugalur Palanisamy
,
N.
,
Rivière Lorphèvre
,
E.
,
Gobert
,
M.
,
Briffoteaux
,
G.
,
Tuyttens
,
D.
,
Arrazola
,
P.-J.
, and
Ducobu
,
F.
,
2022
, “
Identification of the Parameter Values of the Constitutive and Friction Models in Machining Using Ego Algorithm: Application to Ti6Al4V
,”
Metals
,
12
(
6
), p.
976
.
46.
Ducobu
,
F.
,
Palanisamy
,
N. K.
,
Arrazola
,
P.-J.
, and
Rivière-Lorphèvre
,
E.
,
2023
, “
Application of Material Constitutive and Friction Models Parameters Identified With AI and ALE to a CEL Orthogonal Cutting Model
,”
Procedia CIRP
,
117
, pp.
311
316
.
47.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
48.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2d Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti6Al4V
,”
Int. J. Mach. Tools. Manuf.
,
48
(
3
), pp.
275
288
.
49.
Markopoulos
,
A.
,
Vaxevanidis
,
N.
, and
Manolakos
,
D.
,
2015
, “
Friction and Material Modelling in Finite Element Simulation of Orthogonal Cutting
,”
Tribol. Ind.
,
37
(
4
), pp.
440
448
.
50.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2014
, “
Numerical Contribution to the Comprehension of Saw-Toothed Ti6Al4V Chip Formation in Orthogonal Cutting
,”
Int. J. Mech. Sci.
,
81
, pp.
77
87
.
51.
Movahhedy
,
M. R.
,
Gadala
,
M. S.
, and
Altintas
,
Y.
,
2000
, “
Simulation of Chip Formation in Orthogonal Metal Cutting Process: An Ale Finite Element Approach
,”
Mach. Sci. Technol.
,
4
(
1
), pp.
15
42
.
52.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2017
, “
Mesh Influence in Orthogonal Cutting Modelling With the Coupled Eulerian-Lagrangian (CEL) Method
,”
Eur. J. Mech., A/Solids
,
65
, pp.
324
335
.
53.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2015
, “
On the Introduction of Adaptive Mass Scaling in a Finite Element Model of Ti6al4v Orthogonal Cutting
,”
Simul. Modell. Practice Theory
,
53
, pp.
1
14
.
54.
Leseur
,
D.
,
1999
,
Experimental Investigations of Material Models for Ti-6A1-4V and 2024-T3
.
55.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M. H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti6Al4V (TA6v) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
.
56.
Seo
,
S.
,
Min
,
O.
, and
Yang
,
H.
,
2005
, “
Constitutive Equation for Ti–6al–4v at High Temperatures Measured Using the Shpb Technique
,”
Int. J. Impact Eng. - INT J IMPACT ENG
,
31
(
6
), pp.
735
754
.
57.
Emmerich
,
M.
, and
Deutz
,
A.
,
2018
, “
A Tutorial on Multiobjective Optimization: Fundamentals and Evolutionary Methods
,”
Natural Comput.
,
17
, pp.
585
609
.
58.
Wang
,
X.
,
Jin
,
Y.
,
Schmitt
,
S.
, and
Olhofer
,
M.
,
2020
, “
An Adaptive Bayesian Approach to Surrogate-Assisted Evolutionary Multi-objective Optimization
,”
Inf. Sci.
,
519
, pp.
317
331
.
59.
Cheng
,
R.
,
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
,
2016
, “
A Reference Vector Guided Evolutionary Algorithm for Many-objective Optimization
,”
IEEE Trans. Evol. Comput.
,
20
(
5
), pp.
773
791
.
60.
Talbi
,
E. G.
,
2009
,
Metaheuristics: From Design to Implementation
,
Wiley
,
Hoboken, NJ
.
61.
Cornell
,
J. A.
,
2002
,
Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data
,
John Wiley & Sons
,
Hoboken, NJ
.
62.
Bonilla
,
E. V.
,
Chai
,
K.
, and
Williams
,
C.
,
2008
, “
Multi-Task Gaussian Process Prediction
,”
Advances in Neural Information Processing Systems 20
,
Vancouver, British Columbia, Canada
.
63.
Xia
,
W.
,
Yang
,
H.
,
Liao
,
X.
, and
Zeng
,
J.
,
2014
, “
A Multi-objective Optimization Method Based on Gaussian Process Simultaneous Modeling for Quality Control in Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
,
72
, pp.
1333
1346
.
64.
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
65.
Briffoteaux
,
G.
,
Tomenko
,
P.
, and
Geremie
,
F.
,
2021
, “
pysbo, a Python Platform for Surrogate-Based Optimization
,” CeCILL Licence.
66.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2015
, “
Experimental Contribution to the Study of the Ti6Al4V Chip Formation in Orthogonal Cutting on a Milling Machine
,”
Int. J. Mater. Forming
,
8
(
3
), pp.
455
468
.
67.
Kang
,
G.
,
Kim
,
J.
,
Choi
,
Y.
, and
Lee
,
D.
,
2022
, “
In-Process Identification of the Cutting Force Coefficients in Milling Based on a Virtual Machining Model
,”
Int. J. Precis. Eng. Manuf.
,
23
, pp.
839
851
.
68.
Zitzler
,
E.
, and
Thiele
,
L.
,
1999
, “
Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
,
3
(
4
), pp.
257
271
.
69.
Rech
,
J.
,
Arrazola
,
P. J.
,
Claudin
,
C.
,
Courbon
,
C.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2013
, “
Characterisation of Friction and Heat Partition Coefficients at the Tool-Work Material Interface in Cutting
,”
CIRP. Ann.
,
62
(
1
), pp.
79
82
.
70.
Marler
,
R.
, and
Arora
,
J.
,
2010
, “
The Weighted Sum Method for Multi-objective Optimization: New Insights
,”
Struct. Multidiscipl. Optim.
,
41
, pp.
853
862
.
You do not currently have access to this content.