Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Additive manufacturing (AM), commonly referred to as 3D printing, has undergone significant advancements, particularly in the realm of stimuli-responsive 3D printable and programmable materials. This progress has led to the emergence of 4D printing, a fabrication technique that integrates AM capabilities with intelligent materials, introducing dynamic functionality as the fourth dimension. Among the stimuli-responsive materials, shape memory polymers have gained prominence, notably for their crucial applications in stress-absorbing components. However, the exact 3D shape morphing of 4D printed products is affected by both the 3D printing conditions as well as the stimuli activation. Hence it has been hard to precisely control the 3D shape morphing accuracy. To model and optimize the dynamic 3D evolution of the 4D printed parts, we conducted both simulation studies and real-world experiments and introduced a novel machine-learning approach extending the concept of normalizing flows. This method not only enables the process optimization of the dynamic 3D profile evolution by optimizing the process conditions during 3D printing and stimuli activation but also provides interpretability for the intermediate shape morphing process. This research contributes to a deeper understanding of the nuanced interplay between process parameters and the dynamic 3D transformation process in 4D printing.

References

1.
Rezende
,
D.
, and
Mohamed
,
S.
,
2015
, “
Variational Inference With Normalizing Flows
,”
International Conference on Machine Learning
,
Lille, France
,
July 6–11
,
PMLR
, pp.
1530
1538
.
2.
An
,
B.
,
Tao
,
Y.
,
Gu
,
J.
,
Cheng
,
T.
,
Chen
,
X. A.
,
Zhang
,
X.
,
Zhao
,
W.
, et al
,
2018
, “
Thermorph: Democratizing 4D Printing of Self-Folding Materials and Interfaces
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
Montreal, Canada
,
Apr. 21–26
, pp.
1
12
.
3.
Barletta
,
M.
,
Gisario
,
A.
, and
Mehrpouya
,
M.
,
2021
, “
4D Printing of Shape Memory Polylactic Acid (PLA) Components: Investigating the Role of the Operational Parameters in Fused Deposition Modelling (FDM)
,”
J. Manuf. Processes
,
61
, pp.
473
480
.
4.
Bodaghi
,
M.
,
Noroozi
,
R.
,
Zolfagharian
,
A.
,
Fotouhi
,
M.
, and
Norouzi
,
S.
,
2019
, “
4D Printing Self-Morphing Structures
,”
Materials
,
12
(
8
), p.
1353
.
5.
Tezerjani
,
S. M. D.
,
Yazdi
,
M. S.
, and
Hosseinzadeh
,
M. H.
,
2022
, “
The Effect of 3D Printing Parameters on the Shape Memory Properties of 4D Printed Polylactic Acid Circular Disks: An Experimental Investigation and Parameters Optimization
,”
Mater. Today Commun.
,
33
, p.
104262
.
6.
Akbar
,
I.
,
El Hadrouz
,
M.
,
El Mansori
,
M.
, and
Tarfaoui
,
M.
,
2023
, “
Thermomechanical Shape Memory Testing of 4D Printed Novel Material Rhombus-Shape Structure
,”
Appl. Mater. Today
,
33
, p.
101876
.
7.
Ren
,
L.
,
Li
,
B.
,
Liu
,
Q.
,
Ren
,
L.
,
Song
,
Z.
,
Zhou
,
X.
, and
Gao
,
P.
,
2021
, “
4D Printing Dual Stimuli-Responsive Bilayer Structure Toward Multiple Shape-Shifting
,”
Front. Mater.
,
8
, p.
655160
.
8.
Hosseinzadeh
,
M.
,
Ghoreishi
,
M.
, and
Narooei
,
K.
,
2023
, “
4D Printing of Shape Memory Polylactic Acid Beams: An Experimental Investigation Into FDM Additive Manufacturing Process Parameters, Mathematical Modeling, and Optimization
,”
J. Manuf. Processes
,
85
, pp.
774
782
.
9.
Nam
,
S.
, and
Pei
,
E.
,
2020
, “
The Influence of Shape Changing Behaviors From 4D Printing Through Material Extrusion Print Patterns and Infill Densities
,”
Materials
,
13
(
17
), p.
3754
.
10.
Sun
,
X.
,
Yue
,
L.
,
Yu
,
L.
,
Shao
,
H.
,
Peng
,
X.
,
Zhou
,
K.
,
Demoly
,
F.
, et al
,
2022
, “
Machine Learning-Evolutionary Algorithm Enabled Design for 4D-Printed Active Composite Structures
,”
Adv. Funct. Mater.
,
32
(
10
), p.
2109805
.
11.
Huang
,
Q.
,
Wang
,
Y.
,
Lyu
,
M.
, and
Lin
,
W.
,
2020
, “
Shape Deviation Generator – A Convolution Framework for Learning and Predicting 3-D Printing Shape Accuracy
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
3
), pp.
1486
1500
.
12.
Abdelhamed
,
A.
,
Brubaker
,
M. A.
, and
Brown
,
M. S.
,
2019
, “
Noise Flow: Noise Modeling With Conditional Normalizing Flows
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
3165
3173
.
13.
Papamakarios
,
G.
,
Nalisnick
,
E.
,
Rezende
,
D. J.
,
Mohamed
,
S.
, and
Lakshminarayanan
,
B.
,
2021
, “
Normalizing Flows for Probabilistic Modeling and Inference
,”
J. Mach. Learn. Res.
,
22
(
57
), pp.
1
64
.
14.
Yang
,
G.
,
Huang
,
X.
,
Hao
,
Z.
,
Liu
,
M.-Y.
,
Belongie
,
S.
, and
Hariharan
,
B.
,
2019
, “
Pointflow: 3D Point Cloud Generation With Continuous Normalizing Flows
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
4541
4550
.
15.
Biehler
,
M.
,
Lin
,
D.
, and
Shi
,
J.
,
2023
, “
DETONATE: Nonlinear Dynamic Evolution Modeling of Time-Dependent 3-Dimensional Point Cloud Profiles
,”
IISE Trans.
,
56
(
5
), pp.
541
558
.
16.
Biehler
,
M.
,
Li
,
J.
, and
Shi
,
J.
,
2024
, “
FUSION3D: Multimodal Data Fusion for 3D Shape Reconstruction – A Soft Sensing Approach
,”
IISE Trans.
17.
Chen
,
R. T.
,
Rubanova
,
Y.
,
Bettencourt
,
J.
, and
Duvenaud
,
D. K.
,
2018
, “
Neural Ordinary Differential Equations
,”
Advances in Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 3–8
.
18.
Grathwohl
,
W.
,
Chen
,
R. T.
,
Bettencourt
,
J.
,
Sutskever
,
I.
, and
Duvenaud
,
D.
,
2019
, “
FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models
,”
International Conference on Learning Representations
,
New Orleans, LA
,
May 6–9
.
19.
Lipman
,
Y.
,
Chen
,
R. T.
,
Ben-Hamu
,
H.
,
Nickel
,
M.
, and
Le
,
M.
,
2023
, “
Flow Matching for Generative Modeling
,”
International Conference on Learning Representations
,
Kigali, Rwanda
,
May 1–5
.
20.
Biehler
,
M.
,
Mock
,
R.
,
Kode
,
S.
,
Mehmood
,
M.
,
Bhardwaj
,
P.
, and
Shi
,
J.
,
2024
, “
AUDIT: Functional Qualification in Additive Manufacturing Via Physical and Digital Twins
,”
ASME J. Manuf. Sci. Eng.
,
146
(
2
), p.
021001
.
21.
Biehler
,
M.
, and
Shi
,
J.
,
2024
, “
RETROFIT: Real-Time Control of Time-Dependent 3D Point Cloud Profiles
,”
ASME J. Manuf. Sci. Eng.
,
146
(
6
), p.
061006
.
22.
Locatello
,
F.
,
Bauer
,
S.
,
Lucic
,
M.
,
Raetsch
,
G.
,
Gelly
,
S.
,
Schölkopf
,
B.
, and
Bachem
,
O.
,
2019
, “
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
,”
International Conference on Machine Learning
,
Long Beach, CA
,
June 9–15
,
PMLR
, pp.
4114
4124
.
23.
Lu
,
C.
,
Chen
,
J.
,
Li
,
C.
,
Wang
,
Q.
, and
Zhu
,
J.
,
2021
, “
Implicit Normalizing Flows
,”
International Conference on Machine Learning
,
Virtual
,
May 3–7
,
PMLR
, pp.
1
24
.
24.
Lucas
,
A.
,
Iliadis
,
M.
,
Molina
,
R.
, and
Katsaggelos
,
A. K.
,
2018
, “
Using Deep Neural Networks for Inverse Problems in Imaging: Beyond Analytical Methods
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
20
36
.
25.
Behrmann
,
J.
,
Vicol
,
P.
,
Wang
,
K.-C.
,
Grosse
,
R.
, and
Jacobsen
,
J.-H.
,
2021
, “
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
,”
International Conference on Artificial Intelligence and Statistics
,
Virtual Conference
,
Apr. 13–15
,
PMLR
, pp.
1792
1800
.
26.
Hong
,
S.
,
Park
,
I.
, and
Chun
,
S. Y.
,
2023
, “
On the Robustness of Normalizing Flows for Inverse Problems in Imaging
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Paris, France
,
Oct. 1–6
, pp.
10745
10755
.
27.
Kirichenko
,
P.
,
Izmailov
,
P.
, and
Wilson
,
A. G.
,
2020
, “
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
,”
Adv. Neural Inf. Process. Syst.
,
33
, pp.
20578
20589
.
28.
Lugmayr
,
A.
,
Danelljan
,
M.
,
Van Gool
,
L.
, and
Timofte
,
R.
,
2020
, “
Srflow: Learning the Super-Resolution Space With Normalizing Flow
,”
Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part V 16
,
Glasgow, UK
,
Aug. 23–28
,
Springer
, pp.
715
732
.
29.
Wang
,
Y.
,
Wan
,
R.
,
Yang
,
W.
,
Li
,
H.
,
Chau
,
L.-P.
, and
Kot
,
A.
,
2022
, “
Low-Light Image Enhancement With Normalizing Flow
,”
Proc. AAAI Conf. Artif. Intell.
,
36
(
3
), pp.
2604
2612
.
30.
Athinarayanarao
,
D.
,
Prod’hon
,
R.
,
Chamoret
,
D.
,
Qi
,
H. J.
,
Bodaghi
,
M.
,
André
,
J. C.
, and
Demoly
,
F.
,
2023
, “
Computational Design for 4D Printing of Topology Optimized Multi-material Active Composites
,”
npj Comput. Mater.
,
9
(
1
), p.
1
.
31.
Yu
,
Y.
,
Liu
,
H.
,
Qian
,
K.
,
Yang
,
H.
,
McGehee
,
M.
,
Gu
,
J.
,
Luo
,
D.
, et al
,
2020
, “
Material Characterization and Precise Finite Element Analysis of Fiber Reinforced Thermoplastic Composites for 4D Printing
,”
Comput.-Aided Des.
,
122
, p.
102817
.
32.
Godaba
,
H.
,
Sajad
,
A.
,
Patel
,
N.
,
Althoefer
,
K.
, and
Zhang
,
K.
,
2020
, “
A Two-Fingered Robot Gripper With Variable Stiffness Flexure Hinges Based on Shape Morphing
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
,
IEEE
, pp.
8716
8721
.
33.
Gutierrez
,
R. B.
,
Garcia
,
M.
,
McDuffie
,
J.
,
Long
,
C.
, and
Tekes
,
A.
,
2020
, “
Development of Wire Actuated Monolithic Soft Gripper Positioned by Robot Manipulator
,”
Dynamic Systems and Control Conference
, Vol.
84270
,
American Society of Mechanical Engineers
, p.
V001T18A001
.
34.
Lee
,
L. Y.
,
Syadiqeen
,
O. A.
,
Tan
,
C. P.
, and
Nurzaman
,
S. G.
,
2021
, “
Closed-Structure Compliant Gripper With Morphologically Optimized Multi-material Fingertips for Aerial Grasping
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
887
894
.
35.
Rismalia
,
M.
,
Hidajat
,
S.
,
Permana
,
I.
,
Hadisujoto
,
B.
,
Muslimin
,
M.
, and
Triawan
,
F.
,
2019
, “
Infill Pattern and Density Effects on the Tensile Properties of 3D Printed PLA Material
,”
J. Phys. Conf. Ser.
,
1402
(
4
), p.
044041
.
36.
Bute
,
I.
,
Tarasovs
,
S.
,
Vidinejevs
,
S.
,
Vevere
,
L.
,
Sevcenko
,
J.
, and
Aniskevich
,
A.
,
2023
, “
Thermal Properties of 3D Printed Products From the Most Common Polymers
,”
Int. J. Adv. Manuf. Technol.
,
124
(
7
), pp.
2739
2753
.
37.
Subeshan
,
B.
,
Alonayni
,
A.
,
Rahman
,
M. M.
, and
Asmatulu
,
E.
,
2018
, “
Investigating Compression Strengths of 3D Printed Polymeric Infill Specimens of Various Geometries
,”
Nano-, Bio-, Info-Tech Sensors, and 3D Systems II
,
Denver, CO
,
Mar. 5–7
, Vol.
10597
,
SPIE
, pp.
89
94
.
38.
Tang
,
C.
,
Liu
,
J.
,
Yang
,
Y.
,
Liu
,
Y.
,
Jiang
,
S.
, and
Hao
,
W.
,
2020
, “
Effect of Process Parameters on Mechanical Properties of 3D Printed PLA Lattice Structures
,”
Compos., Part C: Open Access
,
3
, p.
100076
.
39.
Bates
,
S. R.
,
Farrow
,
I. R.
, and
Trask
,
R. S.
,
2019
, “
Compressive Behaviour of 3D Printed Thermoplastic Polyurethane Honeycombs With Graded Densities
,”
Mater. Des.
,
162
, pp.
130
142
.
40.
Lee
,
H.
,
Eom
,
R.-I.
, and
Lee
,
Y.
,
2019
, “
Evaluation of the Mechanical Properties of Porous Thermoplastic Polyurethane Obtained by 3D Printing for Protective Gear
,”
Adv. Mater. Sci. Eng.
,
2019
, pp.
1
10
.
41.
Arifvianto
,
B.
,
Iman
,
T. N.
,
Prayoga
,
B. T.
,
Dharmastiti
,
R.
,
Salim
,
U. A.
,
Mahardika
,
M.
, and
Suyitno
,
2021
, “
Tensile Properties of the FFF-Processed Thermoplastic Polyurethane (TPU) Elastomer
,”
Int. J. Adv. Manuf. Technol.
,
117
(
5
), pp.
1709
1719
.
42.
Hasan
,
H.
,
2021
, “
The Effect of Process Parameters on Mechanical Properties of TPU Parts Fabricated by Fused Deposition Modelling
,”
Master’s thesis
,
School of Mechanical and Mining Engineering, The University of Queensland
,
St Lucia, Australia
.
43.
Li
,
R.
,
Li
,
X.
,
Heng
,
P.-A.
, and
Fu
,
C.-W.
,
2021
, “
Point Cloud Upsampling Via Disentangled Refinement
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Nashville, TN
,
June 20–25
, pp.
344
353
.
44.
Potamias
,
R. A.
,
Bouritsas
,
G.
, and
Zafeiriou
,
S.
,
2022
, “
Revisiting Point Cloud Simplification: A Learnable Feature Preserving Approach
,”
European Conference on Computer Vision
,
Tel Aviv, Israel
,
Oct. 23–27
,
Springer
, pp.
586
603
.
45.
Biehler
,
M.
,
Yan
,
H.
, and
Shi
,
J.
,
2023
, “
ANTLER: Bayesian Nonlinear Tensor Learning and Modeler for Unstructured, Varying-Size Point Cloud Data
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
1
), pp.
402
415
.
46.
Nguyen
,
T.
,
Pham
,
Q.-H.
,
Le
,
T.
,
Pham
,
T.
,
Ho
,
N.
, and
Hua
,
B.-S.
,
2021
, “
Point-Set Distances for Learning Representations of 3D Point Clouds
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Montreal, Canada
,
Oct. 11–17
, pp.
10478
10487
.
47.
Kačergis
,
L.
,
Mitkus
,
R.
, and
Sinapius
,
M.
,
2019
, “
Influence of Fused Deposition Modeling Process Parameters on the Transformation of 4D Printed Morphing Structures
,”
Smart Mater. Struct.
,
28
(
10
), p.
105042
.
You do not currently have access to this content.