Abstract

Massive continuous streaming data are generated over time during production in a multistage manufacturing process. This paper aims to develop a product-oriented synchronization and effective information extraction of continuous streaming data and further model the relationships among variables for knowledge discovery. Take the steel rolling process as an example; this paper proposes a three-step data analytics procedure for product-oriented synchronization of continuous streaming data, effective information extraction, and further conducting relationship mining between the roll gap adjustment operations and product shapes based on the product-oriented data. The developed procedure first converts the continuous streaming data generated over time in a production process to product-oriented data set, then extracts the information related to the causes and effects of roll gap adjustments, and finally fits the model describing the relationship among the roll gap adjustments, the change of rolling torques, and the change of product dimensions. This data analytics procedure facilitates the decision-making in the steel rolling process and illustrates an effective application of massive in-situ sensing data towards intelligent decision-making in data-rich manufacturing processes.

References

1.
Stankovic
,
J. A.
,
2014
, “
Research Directions for the Internet of Things
,”
IEEE Internet Things J.
,
1
(
1
), pp.
3
9
.
2.
Jia
,
H.
,
Yi
,
L. M.
,
Shi
,
J.
, and
Chang
,
T. S.
,
2004
, “
An Intelligent Real-Time Vision System for Surface Defect Detection
,”
Proceedings of the 17th International Conference on Pattern Recognition
,
Cambridge, UK
,
Aug. 23–26
, Vol.
3
, pp.
239
242
.
3.
Li
,
J.
,
Shi
,
J.
, and
Chang
,
T. S.
,
2007
, “
On-Line Seam Detection in Rolling Processes Using Snake Projection and Discrete Wavelet Transform
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
926
933
.
4.
Li
,
J.
, and
Shi
,
J.
,
2007
, “
Knowledge Discovery From Observational Data for Process Control Using Causal Bayesian Networks
,”
IIE Trans.
(
6
),
39
, pp.
681
690
.
5.
Jin
,
R.
,
Li
,
J.
, and
Shi
,
J.
,
2007
, “
Quality Prediction and Control in Rolling Processes Using Logistic Regression
,”
Transactions of NAMRI/SME
,
Ann Arbor, MI
,
May 22–25
, Vol. 35, pp.
113
120
.
6.
Wang
,
A.
,
Chang
,
T. S.
, and
Shi
,
J.
,
2021
, “
Multiple Event Identification and Characterization by Retrospective Analysis of Structured Data Streams
,”
IISE Trans.
, pp.
1
18
.
7.
Miao
,
H.
,
Wang
,
A.
,
Li
,
B.
, and
Shi
,
J.
,
2021
, “
Structural Tensor-on-Tensor Regression With Interaction Effects and Its Application to a Hot Rolling Process
,”
J. Qual. Technol.
, pp.
1
14
.
8.
Patel
,
A.
,
Malik
,
A. S.
, and
Mathews
,
R.
,
2022
, “
Efficient 3D Model to Predict Time History of Structural Dynamics in Cold Rolling Mills
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p. 071009. http//dx.doi.org/10.1115/1.4052703
9.
Lin
,
Y. J.
,
Suh
,
C. S.
,
Langari
,
R.
, and
Noah
,
S. T.
,
2003
, “
On the Characteristics and Mechanism of Rolling Instability and Chatter
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
778
786
.
10.
Brauneis
,
R.
,
Steinboeck
,
A.
,
Jochum
,
M.
, and
Kugi
,
A.
,
2020
, “
Model-Based Dynamic Calibration of a Multi-actuator Gap Leveler for Heavy Plates
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071007
.
11.
Prinz
,
K.
,
Steinboeck
,
A.
,
Müller
,
M.
,
Ettl
,
A.
,
Schausberger
,
F.
, and
Kugi
,
A.
,
2019
, “
Online Parameter Estimation for Adaptive Feedforward Control of the Strip Thickness in a Hot Strip Rolling Mill
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071005
.
12.
Seo
,
J. H.
,
Han
,
S. W.
,
Van
,
T.
,
Chester
,
J.
, and
Moon
,
Y. H.
,
2019
, “
Flatness Control of the Crossbowed Hot Plate Using Cold Roller Leveling
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051002
.
13.
Seo
,
J. H.
,
Van
,
T.
,
Chester
,
J.
, and
Moon
,
Y. H.
,
2016
, “
Effect of Roll Configuration on the Leveling Effectiveness of Tail-Up Bent Plate Using Finite-Element Analysis
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071004
.
14.
Wu
,
C.
,
Zhang
,
L.
,
Qu
,
P.
,
Li
,
S.
,
Jiang
,
Z.
, and
Li
,
W.
,
2021
, “
An Investigation Into the Texture Transfer in the Process of Lubricated Skin Pass Rolling
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
091003
.
15.
Mehrabi
,
R.
,
Salimi
,
M.
, and
Ziaei-Rad
,
S.
,
2015
, “
Finite Element Analysis on Chattering in Cold Rolling and Comparison With Experimental Results
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061013
.
16.
Zhang
,
F.
, and
Malik
,
A. S.
,
2017
, “
A Roll-Stack Contact Mechanics Model to Predict Strip Profile in Rolling Mills With Asymmetric CVC Roll Crowns
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011008
.
17.
Kapil
,
S.
,
Eberhard
,
P.
, and
Dwivedy
,
S. K.
,
2015
, “
Dynamic Analysis of Cold-Rolling Process Using the Finite-Element Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041002
.
18.
Mahfouf
,
M.
,
Yang
,
Y. Y.
, and
Linkens
,
D. A.
,
2004
, “
Roll Speed and Roll Gap Modelling—A Case Study for an Experimental Rolling Mill
,”
IFAC Proc. Vol.
,
37
(
15
), pp.
5
10
.
19.
Byon
,
S. M.
,
Na
,
D. H.
, and
Lee
,
Y.
,
2009
, “
Effect of Roll Gap Adjustment on Exit Cross Sectional Shape in Groove Rolling—Experimental and FE Analysis
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4465
4470
.
20.
Byon
,
S. M.
, and
Lee
,
Y.
,
2008
, “
“A Study of Roll Gap Adjustment due to Roll Wear in Groove Rolling: Experiment and Modelling
,”
Proc. Inst. Mech. Eng. Part B
,
222
(
7
), pp.
875
885
.
21.
Liskow
,
M.
, and
Kruse
,
M.
,
2018
, “
Automation Tool for Quality Assurance of Long Products
,”
Mater. Sci. Forum
,
918
, pp.
134
139
.
22.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer Science and Business Media
,
New York
.
23.
Stockert
,
S.
,
Wehr
,
M.
,
Lohmar
,
J.
,
Hirt
,
G.
, and
Abel
,
D.
,
2018
, “
Improving the Thickness Accuracy of Cold Rolled Narrow Strip by Piezoelectric Roll Gap Control at High Rolling Speed
,”
CIRP Ann.
,
67
(
1
), pp.
313
316
.
24.
Shi
,
J.
,
2006
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press
,
Boca Raton, FL
.
25.
Liu
,
H.
,
Palatucci
,
M.
, and
Zhang
,
J.
,
2009
, “
Blockwise Coordinate Descent Procedures for the Multi-task Lasso, With Applications to Neural Semantic Basis Discovery
,”
Proceedings of the 26th Annual International Conference on Machine Learning
,
Montreal, Quebec, Canada
,
June 14–18
, pp.
1
8
.
26.
Massias
,
M.
,
Fercoq
,
O.
,
Gramfort
,
A.
, and
Salmon
,
J.
,
2018
, “
Generalized Concomitant Multi-task Lasso for Sparse Multimodal Regression
,”
International Conference on Artificial Intelligence and Statistics
,
Playa Blanca, Lanzarote, Canary Islands
,
Apr. 9–11
,
PMLR
, pp.
998
1007
.
You do not currently have access to this content.