Abstract

Involute gears are a vital component used in industry due to their ability to provide flexible and accurate rotary motion. Gear shaping is one of the most prominent gear cutting processes as it can be used to effectively manufacture spur and helical external as well as internal gears. Thus, the accurate prediction of the cutting forces developed during the cutting process is of great importance because it can greatly affect the wear and the cutting tool’s life. In this work, a simulation model was developed based on a commercial CAD software, able to simulate the kinematics involved in the process and provide accurate results regarding the undeformed chip geometry as well as the cutting forces. In order to verify the accuracy of the model, the produced gear flanks are compared with the theoretical ones and the calculated cutting forces are compared with the respective measured forces obtained from the literature.

References

1.
Radzevich
,
S. P.
,
2017
,
Gear Cutting Tools: Science and Engineering
,
CRC Press
,
Boca Raton, FL
.
2.
Gutman
,
P.
,
1988
,
Zerspankraftberechnung Beim Waelzfraesen
,
Rheinisch-Westfaelische Technische Hochschule
,
Aachen, Germany
.
3.
Antoniadis
,
A.
,
Vidakis
,
N.
, and
Bilalis
,
N.
,
2002
, “
Fatigue Fracture Investigation of Cemented Carbide Tools in Gear Hobbing, Part 1: FEM Modeling of Fly Hobbing and Computational Interpretation of Experimental Results
,”
ASME J. Manuf. Sci. Eng.
,
124
(
4
), pp.
784
791
.
4.
Antoniadis
,
A.
,
Vidakis
,
N.
, and
Bilalis
,
N.
,
2002
, “
Fatigue Fracture Investigation of Cemented Carbide Tools in Gear Hobbing, Part 2: The Effect of Cutting Parameters on the Level of Tool Stresses—A Quantitative Parametric Analysis
,”
ASME J. Manuf. Sci. Eng.
,
124
(
4
), pp.
792
798
.
5.
Vasilis
,
D.
,
Nectarios
,
V.
, and
Aristomenis
,
A.
,
2007
, “
Advanced Computer Aided Design Simulation of Gear Hobbing by Means of Three-Dimensional Kinematics Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
911
918
.
6.
Antoniadis
,
A.
,
2012
, “
Gear Skiving—CAD Simulation Approach
,”
Comput. Aided Des.
,
44
(
7
), pp.
611
616
.
7.
Batsch
,
M.
,
2020
, “
A Novel Method of Obtaining Honing Tool Profile for Machining Gears With Profile Modifications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p. 091004.
8.
Sulzer
,
G.
,
1973
,
"Leistungssteigerung Bei Der Zylinderradherstellung Durch Genaue Erfassung Der Zerspankinematik", Ph.D Dissertation, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany
.
9.
Bouzakis
,
K.-D.
,
1976
,
"Erhöhung Der Wirtschaftlichkeit Beim Wälzstossen Durch Optimierung Des Zerspanprozesses Und Der Werkzeugauslegung", Ph.D Dissertation, Rheinisch-Westfaelische Technische Hochschule, Aachen, Germany
.
10.
König
,
W.
, and
Bouzakis
,
K.-D.
,
1978
, “
Ermittlung Der Zerspankraftkomponenten Beim Wälzstoßen
,”
Verein Deutscher Ingenieure
,
120
(
15
), pp.
689
756
.
11.
Erkorkmaz
,
K.
,
Katz
,
A.
,
Hosseinkhani
,
Y.
,
Plakhotnik
,
D.
,
Stautner
,
M.
, and
Ismail
,
F.
,
2016
, “
Chip Geometry and Cutting Forces in Gear Shaping
,”
CIRP Ann.
,
65
(
1
), pp.
133
136
.
12.
Katz
,
A.
,
Erkorkmaz
,
K.
, and
Ismail
,
F.
,
2018
, “
Virtual Model of Gear Shaping–Part I: Kinematics, Cutter-Workpiece Engagement, and Cutting Forces
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p. 071007.
13.
Li
,
L.
,
Zhang
,
L.
,
Yu
,
B.
,
Wang
,
K.
, and
Liu
,
F.
,
2015
, “
An Efficient Spur Gear Shaping Method Based on Homogenizing Cutting Area Through Variational Circular Feed Rate
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
231
(
9
), pp.
1587
1598
.
14.
Xu
,
M.
,
Han
,
X.
,
Hua
,
L.
, and
Zheng
,
F.
,
2020
, “
Modeling and Methods for Gear Shaping Process and Cutting Force Prediction of Variable Transmission Ratio Rack
,”
Int. J. Mech. Sci.
,
171
, p.
105364
.
15.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2016
, “
Linkage Model and Manufacturing Process of Shaping Non-Circular Gears
,”
Mech. Mach. Theory
,
96
, pp.
192
212
.
16.
Alipiev
,
O.
,
Marinov
,
S.
, and
Uzunov
,
T.
,
2018
, “
Optimal Tooth Profile Design of a Gear Shaper Cutter When Meshing With Internal Straight Splines
,”
Mech. Mach. Theory
,
129
, pp.
70
79
.
17.
Khusainov
,
R. M.
, and
Khaziev
,
R. R.
,
2017
, “
Mathematical Model for Assessing the Accuracy of Processed Gears on Gear Shaping Machines
,”
Procedia Eng.
,
206
, pp.
1087
1092
.
18.
Kühn
,
F.
,
Brimmers
,
J.
, and
Bergs
,
T.
,
2021
, “
Process Design for Gear Shaping of Austempered Ductile Iron (ADI) Components
,”
Procedia CIRP
,
99
, pp.
214
219
.
19.
Liu
,
Y.
,
Xiong
,
Z.
, and
Liu
,
Z.
,
2020
, “
Stochastic Cutting Force Modeling and Prediction in Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p. 121004.
20.
Kienzle
,
O.
, and
Victor
,
H.
,
1957
, “
Spezifische Shnittkraefte Bei Der Metallbearbeitung
,”
Werkstattstehnik Maschinenbau
,
47
(
5
), pp.
224
225
.
21.
König
,
W.
, and
E
,
K.
,
1973
,
Spezifische Schnittkraftwerte Für Die Zerspanung Metallischer Werkstoffe
,
Verlag Stahleisen
,
Düsseldorf
.
You do not currently have access to this content.