Abstract

To accurately model the resistance spot welding (RSW) joint in finite element analysis (FEA), the constitutive behavior of materials in various weld regions such as heat-affected zone (HAZ) should be measured. Due to the sharp temperature gradient through RSW specimens, microstructural and corresponding mechanical properties of weld regions are different. Additionally, the size of RSW is small; hence, it is challenging to directly measure the stress–strain curve of materials. In this regard, hardness-scaling and ball-indentation techniques are among the popular methods to in-directly measure the stress–strain curve of these materials. However, the effectiveness of these two techniques on predicting the stress/strain distribution and failure behavior of resistance spot welded advanced high strength steels (AHSS) is not clear. In the present work, the stress–strain curves obtained through hardness-scaling and ball-indentation techniques have been compared. The stress/strain distribution and failure behavior of the resistance spot welded AHSS specimen have been simulated by the stress–strain data obtained using the two methods. The simulation results have been compared with experimental analysis. The results showed that both methods can accurately predict the failure location. With the comparison of FEA results with experiment analysis, it was shown that the ball-indentation method provides slightly better predictions of failure behavior compared to the hardness-scaling method. However, the harness scaling method is a simple and convenient technique, which can be implemented as a qualitative analysis for the failure behavior of RSW joints.

References

1.
Diewwanit
,
O.
,
Keawcha-Um
,
P.
,
Keawcha-Um
,
T.
,
Petchhan
,
W.
, and
Thipprakmas
,
S.
,
2021
, “
Microstructural Evolution and Fracture Mechanism for Scar Defect Formation on Advanced High Strength Steel During a Shearing Process
,”
ASME J. Manuf. Sci. Eng.
,
143
(
6
), p.
061008
.
2.
Chen
,
K.
,
Liu
,
X.
, and
Ni
,
J.
,
2018
, “
Friction Stir Resistance Spot Welding of Aluminum Alloy to Advanced High Strength Steel
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111007
.
3.
Fallahiarezoodar
,
A.
,
Peker
,
R.
, and
Altan
,
T.
,
2016
, “
Temperature Increase in Forming of Advanced High-Strength Steels Effect of Ram Speed Using a Servodrive Press
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094503
.
4.
Kalashami
,
A. G.
,
Kermanpur
,
A.
,
Najafizadeh
,
A.
, and
Mazaheri
,
Y.
,
2016
, “
Development of a High Strength and Ductile Nb-Bearing Dual Phase Steel by Cold-Rolling and Intercritical Annealing of the Ferrite-Martensite Microstructures
,”
Mater. Sci. Eng. A
,
658
, pp.
355
366
.
5.
Ghatei Kalashami
,
A.
,
DiGiovanni
,
C.
,
Razmpoosh
,
M. H.
,
Goodwin
,
F.
, and
Zhou
,
N. Y.
,
2020
, “
The Effect of Silicon Content on Liquid-Metal-Embrittlement Susceptibility in Resistance Spot Welding of Galvanized Dual-Phase Steel
,”
J. Manuf. Processes
,
57
, pp.
370
379
.
6.
Ghatei-Kalashami
,
A.
,
Zhang
,
S.
,
Shojaee
,
M.
,
Midawi
,
A. R. H.
,
Goodwin
,
F.
, and
Zhou
,
N. Y.
,
2022
, “
Failure Behavior of Resistance Spot Welded Advanced High Strength Steel: The Role of Surface Condition and Initial Microstructure
,”
J. Mater. Process. Technol.
,
299
, p.
117370
.
7.
Qi
,
L.
,
Li
,
F.
,
Zhang
,
Q.
,
Xu
,
Y.
,
Han
,
X.
, and
Li
,
Y.
,
2021
, “
Improvement of Single-Sided Resistance Spot Welding of Austenitic Stainless Steel Using Radial Magnetic Field
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031004
.
8.
Shen
,
Y.
,
Xia
,
Y.-J.
,
Li
,
H.
,
Zhou
,
L.
,
Li
,
Y.-B.
, and
Pan
,
H.-T.
,
2021
, “
A Novel Expulsion Control Strategy With Abnormal Condition Adaptability for Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111009
.
9.
Bag
,
S.
,
DiGiovanni
,
C.
,
Han
,
X.
, and
Zhou
,
N. Y.
,
2020
, “
A Phenomenological Model of Resistance Spot Welding on Liquid Metal Embrittlement Severity Using Dynamic Resistance Measurement
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031007
.
10.
Ghatei Kalashami
,
A.
,
Han
,
X.
,
Goodwin
,
F.
, and
Zhou
,
N. Y.
,
2020
, “
The Influence of Modified Annealing During the Galvanizing Process on the Resistance Spot Welding of the CMn1.8Si Advanced High Strength Steel
,”
Surf. Coat. Technol.
,
381
, p.
125181
.
11.
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2013
, “
Critical Review of Automotive Steels Spot Welding: Process, Structure and Properties
,”
Sci. Technol. Weld. Joining
,
18
(
5
), pp.
361
403
.
12.
Williams
,
N. T.
, and
Parker
,
J. D.
,
2004
, “
Review of Resistance Spot Welding of Steel Sheets: Part 1—Modelling and Control of Weld Nugget Formation
,”
Int. Mater. Rev.
,
49
(
2
), pp.
45
75
.
13.
Ighodaro
,
O. L.
,
Biro
,
E.
, and
Zhou
,
Y. N.
,
2017
, “
Study and Applications of Dynamic Resistance Profiles During Resistance Spot Welding of Coated Hot-Stamping Steels
,”
Metall. Mater. Trans. A
,
48
(
2
), pp.
745
758
.
14.
Yang
,
Y. P.
,
Gould
,
J.
,
Peterson
,
W.
,
Orth
,
F.
,
Zelenak
,
P.
, and
Al-Fakir
,
W.
,
2013
, “
Development of Spot Weld Failure Parameters for Full Vehicle Crash Modelling
,”
Sci. Technol. Weld. Joining
,
18
(
3
), pp.
222
231
.
15.
Li
,
Y. T.
,
Shen
,
Q.
, and
Lin
,
Z. Q.
,
2013
, “
Magnetically Assisted Resistance Spot Welding of Dual-Phase Steel
,”
Weld. J.
,
92
, pp.
124
132
.
16.
Ma
,
Y.
,
Takikawa
,
A.
,
Nakanishi
,
J.
,
Doira
,
K.
,
Shimizu
,
T.
,
Lu
,
Y.
, and
Ma
,
N.
,
2021
, “
Measurement of Local Material Properties and Failure Analysis of Resistance Spot Welds of Advanced High-Strength Steel Sheets
,”
Mater. Des.
,
201
, p.
109505
.
17.
Mohamadizadeh
,
A.
,
Biro
,
E.
, and
Worswick
,
M.
,
2021
, “
Novel Double-Half Spot Weld Testing Technique For Damage Progress And Failure Analysis Using Digital Image Correlation Techniques
,”
Exp. Mech.
,
61
(
9
), pp.
1405
1418
.
18.
Marshall
,
D. V.
,
Bhattacharya
,
D.
, and
Speer
,
J. G.
,
2021
, “
Influence of Paint Baking on the Energy Absorption and Failure Mode of Resistance Spot Welds in TRIP1180 Steel
,”
ASME J. Manuf. Sci. Eng.
,
143
(
9
), p.
094501
.
19.
Nikoosohbat
,
F.
,
Kheirandish
,
S.
,
Goodarzi
,
M.
,
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2010
, “
Microstructure and Failure Behaviour of Resistance Spot Welded DP980 Dual Phase Steel
,”
Mater. Sci. Technol.
,
26
(
6
), pp.
738
744
.
20.
Baltazar Hernandez
,
V. H.
,
Kuntz
,
M. L.
,
Khan
,
M. I.
, and
Zhou
,
Y.
,
2008
, “
Influence of Microstructure and Weld Size on the Mechanical Behaviour of Dissimilar AHSS Resistance Spot Welds
,”
Sci. Technol. Weld. Joining
,
13
(
8
), pp.
769
776
.
21.
Pouranvari
,
M.
,
Marashi
,
S. P. H.
, and
Mousavizadeh
,
S. M.
,
2010
, “
Failure Mode Transition and Mechanical Properties of Similar and Dissimilar Resistance Spot Welds of DP600 and Low Carbon Steels
,”
Sci. Technol. Weld. Joining
,
15
(
7
), pp.
625
631
.
22.
Özen
,
F.
, and
Aslanlar
,
S.
,
2021
, “
Mechanical and Microstructural Evaluation of Resistance Spot Welded Dissimilar TWIP/Martensitic Steel Joints
,”
Int. J. Adv. Manuf. Technol.
,
113
(
11–12
), pp.
3473
3489
.
23.
Badkoobeh
,
F.
,
Nouri
,
A.
,
Hassannejad
,
H.
, and
Mostaan
,
H.
,
2020
, “
Microstructure and Mechanical Properties of Resistance Spot Welded Dual-Phase Steels With Various Silicon Contents
,”
Mater. Sci. Eng. A
,
790
, p.
139703
.
24.
Dancette
,
S.
,
Massardier-Jourdan
,
V.
,
Fabrègue
,
D.
,
Merlin
,
J.
,
Dupuy
,
T.
, and
Bouzekri
,
M.
,
2011
, “
HAZ Microstructures and Local Mechanical Properties of High Strength Steels Resistance Spot Welds
,”
ISIJ Int.
,
51
(
1
), pp.
99
107
.
25.
Tao
,
H.
,
Tong
,
W.
,
Hector
,
L. G.
, and
Zavattieri
,
P. D.
,
2008
, “
Uniaxial Tensile and Simple Shear Behavior of Resistance Spot-Welded Dual-Phase Steel Joints
,”
J. Mater. Eng. Perform.
,
17
(
4
), pp.
517
534
.
26.
Ullner
,
C.
,
Brauser
,
S.
,
Subaric-Leitis
,
A.
,
Weber
,
G.
, and
Rethmeier
,
M.
,
2012
, “
Determination of Local Stress-Strain Properties of Resistance Spot-Welded Joints of Advanced High-Strength Steels Using the Instrumented Indentation Test
,”
J. Mater. Sci.
,
47
(
3
), pp.
1504
1513
.
27.
Zhang
,
S.
,
DiGiovanni
,
C.
,
He
,
L.
, and
Zhou
,
N. Y.
,
2020
, “
Weld Hardness Ratio and Liquid Metal Embrittlement Crack’s Detrimental Effect on Resistant Spot Weld Strength
,”
Sci. Technol. Weld. Joining
,
26
(
1
), pp.
58
67
.
28.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
.
29.
Ghosh
,
S.
,
Yadav
,
S.
, and
Das
,
G.
,
2008
, “
Study of Standard Heat Treatment on Mechanical Properties of Inconel 718 Using Ball Indentation Technique
,”
Mater. Lett.
,
62
(
17–18
), pp.
2619
2622
.
30.
Murty
,
K. L.
,
Miraglia
,
P. Q.
,
Mathew
,
M. D.
,
Shah
,
V. N.
, and
Haggag
,
F. M.
,
1999
, “
Characterization of Gradients in Mechanical Properties of SA-533B Steel Welds Using Ball Indentation
,”
Int. J. Press. Vessel. Pip.
,
76
(
6
), pp.
361
369
.
31.
Byun
,
T. S.
,
Hong
,
J. H.
,
Haggag
,
F. M.
,
Farrell
,
K.
, and
Lee
,
E. H.
,
1997
, “
Measurement of Through-the-Thickness Variations of Mechanical Properties in SA508 Gr.3 Pressure Vessel Steels Using Ball Indentation Test Technique
,”
Int. J. Press. Vessel. Pip.
,
74
(
3
), pp.
231
238
.
32.
Mathew
,
M. D.
,
Murty
,
K. L.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
1999
, “
Ball Indentation Studies on the Effect of Aging on Mechanical Behavior of Alloy 625
,”
Mater. Sci. Eng. A
,
264
(
1–2
), pp.
159
166
.
33.
ASTM E8/E8M-21, Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
,
2021
.
34.
American Welding Society
,
2012
, “
American Welding Society: Test Method for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials (AWS D 8.9M)
,” pp.
1
107
.
35.
Zuniga
,
S. M.
, and
Sheppard
,
S. D.
,
1995
, “
Determining the Constitutive Properties of the Heat-Affected Zone in a Resistance Spot Weld
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
3
), pp.
391
416
.
36.
Midawi
,
A. R. H.
,
Simha
,
C. H. M.
, and
Gerlich
,
A. P.
,
2016
, “
Novel Techniques for Estimating Yield Strength From Loads Measured Using Nearly-Flat Instrumented Indenters
,”
Mater. Sci. Eng. A
,
675
, pp.
449
453
.
37.
Midawi
,
A. R. H.
,
Simha
,
C. H. M.
,
Gesing
,
M. A.
, and
Gerlich
,
A. P.
,
2017
, “
Elastic-Plastic Property Evaluation Using a Nearly Flat Instrumented Indenter
,”
Int. J. Solids Struct.
,
104–105
, pp.
81
91
.
38.
Midawi
,
A. R. H.
,
Simha
,
C. H. M.
, and
Gerlich
,
A. P.
,
2018
, “
Assessment of Yield Strength Mismatch in X80 Pipeline Steel Welds Using Instrumented Indentation
,”
Int. J. Press. Vessel. Pip.
,
168
, pp.
258
268
.
39.
Malow
,
T. R.
,
Koch
,
C. C.
,
Miraglia
,
P. Q.
, and
Murty
,
K. L.
,
1998
, “
Compressive Mechanical Behavior of Nanocrystalline Fe Investigated With an Automated Ball Indentation Technique
,”
Mater. Sci. Eng. A
,
252
(
1
), pp.
36
43
.
40.
DiGiovanni
,
C.
,
Ghatei Kalashami
,
A.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
N. Y.
,
2021
, “
Occurrence of Sub-Critical Heat Affected Zone Liquid Metal Embrittlement in Joining of Advanced High Strength Steel
,”
J. Mater. Process. Technol.
,
288
, p.
116917
.
41.
Kishore
,
K.
,
Kumar
,
P.
, and
Mukhopadhyay
,
G.
,
2019
, “
Resistance Spot Weldability of Galvannealed and Bare DP600 Steel
,”
J. Mater. Process. Technol.
,
271
, pp.
237
248
.
You do not currently have access to this content.