Abstract

Cutting force-induced vibrations in thin-walled parts milling may cause violation of dimensional tolerance while accurate modeling of the milling error distribution is still a challenging work because of the coupling effect between the dynamic cutting forces and the resulting steady-state vibrations. It greatly increases the computational complexity to capture the true cutter–workpiece engagement with classic time domain or iteration method. This paper proposes a novel explicit model to predict the error distribution considering this coupling relationship without iterative calculation. A new cutting force model with variable coefficients with respect to the deflections is developed to describe the dynamic cutting forces. The effectiveness of the force model is verified by a group of calibration experiments. The analytical solution of the dynamic model is discussed and a semi-analytical method is constructed to predict the error distribution directly. Machined surface as well as the deformation errors are derived and thin-walled workpiece milling experiments for verification are conducted. Comparisons between simulations and experiments show that the proposed method is accurate and efficient.

References

1.
Cao
,
L.
,
Zhang
,
X.-M.
,
Huang
,
T.
, and
Ding
,
H.
,
2019
, “
Online Monitoring Machining Errors of Thin-Walled Workpiece: A Knowledge Embedded Sparse Bayesian Regression Approach
,”
IEEE/ASME Trans. Mechatron.
,
24
(
3
), pp.
1259
1270
.
2.
Zhang
,
Z.
,
Qi
,
Y.
,
Cheng
,
Q.
,
Liu
,
Z.
,
Tao
,
Z.
, and
Cai
,
L.
,
2019
, “
Machining Accuracy Reliability During the Peripheral Milling Process of Thin-Walled Components
,”
Rob. Comput. Integr. Manuf.
,
59
, pp.
222
234
.
3.
Mali
,
R. A.
,
Gupta
,
T.
, and
Ramkumar
,
J.
,
2021
, “
A Comprehensive Review of Free-Form Surface Milling—Advances Over a Decade
,”
J. Manuf. Process.
,
62
, pp.
132
167
.
4.
Agarwal
,
A.
, and
Desai
,
K.
,
2021
, “
Rigidity Regulation Approach for Geometric Tolerance Optimization in End Milling of Thin-Walled Components
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111006
.
5.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2014
,
Machining Dynamics
,
Springer
,
New York
.
6.
Khandagale
,
P.
,
Bhakar
,
G.
,
Kartik
,
V.
, and
Joshi
,
S. S.
,
2018
, “
Modelling Time-Domain Vibratory Deflection Response of Thin-Walled Cantilever Workpieces During Flank Milling
,”
J. Manuf. Process.
,
33
, pp.
278
290
.
7.
Li
,
J.
,
Kilic
,
Z. M.
, and
Altintas
,
Y.
,
2020
, “
General Cutting Dynamics Model for Five-Axis Ball-End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121003
.
8.
Huang
,
T.
,
Zhang
,
X.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
An Efficient Linear Approximation of Acceleration Method for Milling Stability Prediction
,”
Int. J. Mach. Tools Manuf.
,
74
, pp.
56
64
.
9.
Huang
,
T.
,
Cao
,
L.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2021
, “
Necessary Discrete Condition for Error Control of Time-Domain Methods in Milling Stability Prediction
,”
Nonlinear Dyn.
,
104
, pp.
3771
3780
.
10.
Huang
,
T.
,
Zhang
,
X.
, and
Ding
,
H.
,
2017
, “
A Novel Approach With Smallest Transition Matrix for Milling Stability Prediction
,”
Nonlinear Dyn.
,
90
(
1
), pp.
95
104
.
11.
Ma
,
J.-W.
,
He
,
G.-Z.
,
Liu
,
Z.
,
Qin
,
F.-Z.
,
Chen
,
S.-Y.
, and
Zhao
,
X.-X.
,
2018
, “
Instantaneous Cutting-Amount Planning for Machining Deformation Homogenization Based on Position-Dependent Rigidity of Thin-Walled Surface Parts
,”
J. Manuf. Process.
,
34
, pp.
401
411
.
12.
Schmitz
,
T. L.
, and
Mann
,
B. P.
,
2006
, “
Closed-Form Solutions for Surface Location Error in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1369
1377
.
13.
Kiss
,
A. K.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2016
, “
Cumulative Surface Location Error for Milling Processes Based on Tool-Tip Frequency Response Function
,”
Procedia CIRP
,
46
, pp.
323
326
.
14.
Kiss
,
A. K.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2020
, “
Effects of Varying Dynamics of Flexible Workpieces in Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011005
.
15.
Li
,
Z.
,
Jiang
,
S.
, and
Sun
,
Y.
,
2017
, “
Chatter Stability and Surface Location Error Predictions in Milling With Mode Coupling and Process Damping
,”
Proc. Inst. Mech. Eng. B
,
233
(
3
), pp.
686
698
.
16.
Sun
,
H.
,
Peng
,
F.
,
Zhou
,
L.
,
Yan
,
R.
, and
Zhao
,
S.
,
2021
, “
A Hybrid Driven Approach to Integrate Surrogate Model and Bayesian Framework for the Prediction of Machining Errors of Thin-Walled Parts
,”
Int. J. Mech. Sci.
,
192
, p.
106111
.
17.
Huang
,
T.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2017
, “
Tool Orientation Optimization for Reduction of Vibration and Deformation in Ball-End Milling of Thin-Walled Impeller Blades
,”
Procedia CIRP
,
58
, pp.
210
215
.
18.
Chen
,
W.
,
Xue
,
J.
,
Tang
,
D.
,
Chen
,
H.
, and
Qu
,
S.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
.
19.
Budak
,
E.
, and
Altintas
,
Y.
,
1995
, “
Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates
,”
Int. J. Mach. Tools Manuf.
,
35
(
3
), pp.
459
476
.
20.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2004
, “
Milling Error Prediction and Compensation in Machining of Low-Rigidity Parts
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1629
1641
.
21.
Wang
,
D.
,
Löser
,
M.
,
Ihlenfeldt
,
S.
,
Wang
,
X.
, and
Liu
,
Z.
,
2019
, “
Milling Stability Analysis With Considering Process Damping and Mode Shapes of In-Process Thin-Walled Workpiece
,”
Int. J. Mech. Sci.
,
159
, pp.
382
397
.
22.
Li
,
Z.-L.
,
Tuysuz
,
O.
,
Zhu
,
L.-M.
, and
Altintas
,
Y.
,
2018
, “
Surface Form Error Prediction in Five-Axis Flank Milling of Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
21
32
.
23.
Qu
,
D.
,
Wang
,
B.
,
Gao
,
Y.
, and
Cao
,
H.
,
2021
, “
A Comprehensive Micro-Milling Force Model for a Low-Stiffness Machining System
,”
ASME J. Manuf. Sci. Eng.
,
143
(
11
), p.
111004
.
24.
Sun
,
Y.
, and
Jiang
,
S.
,
2018
, “
Predictive Modeling of Chatter Stability Considering Force-Induced Deformation Effect in Milling Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
135
, pp.
38
52
.
25.
Totis
,
G.
,
Insperger
,
T.
,
Sortino
,
M.
, and
Stépán
,
G.
,
2019
, “
Symmetry Breaking in Milling Dynamics
,”
Int. J. Mach. Tools Manuf.
,
139
, pp.
37
59
.
26.
Niu
,
J.
,
Jia
,
J.
,
Wang
,
R.
,
Xu
,
J.
,
Sun
,
Y.
, and
Guo
,
D.
,
2021
, “
State Dependent Regenerative Stability and Surface Location Error in Peripheral Milling of Thin-Walled Parts
,”
Int. J. Mech. Sci.
,
196
, p.
106294
.
27.
Cai
,
S.
,
Cai
,
Z.
,
Yao
,
B.
,
Shen
,
Z.
, and
Ma
,
X.
,
2021
, “
Identifying the Transient Milling Force Coefficient of a Slender End-Milling Cutter With Vibrations
,”
J. Manuf. Process.
,
67
, pp.
262
274
.
28.
Li
,
Z.
,
Yan
,
R.
,
Tang
,
X.
,
Peng
,
F.
,
Xin
,
S.
, and
Wu
,
J.
,
2021
, “
Analysis of the Effect of Tool Posture on Stability Considering the Nonlinear Dynamic Cutting Force Coefficient
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081009
.
29.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
2020
, “
Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091005
.
30.
Niu
,
J.
,
Jia
,
J.
,
Sun
,
Y.
, and
Guo
,
D.
,
2020
, “
Generation Mechanism and Quality of Milling Surface Profile for Variable Pitch Tools Considering Runout
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121001
.
31.
Huang
,
T.
,
Zhang
,
X.-M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111002
.
32.
Cao
,
L.
,
Huang
,
T.
,
Shi
,
D.-M.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2020
, “
Active Chatter Suppression in Low Immersion Intermittent Milling Process
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101005
.
33.
Huang
,
T.
,
Zhu
,
L.
,
Du
,
S.
,
Chen
,
Z.
, and
Ding
,
H.
,
2018
, “
Robust Active Chatter Control in Milling Processes With Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101005
.
34.
Bittanti
,
S.
,
Laub
,
A. J.
, and
Willems
,
J. C.
,
2012
,
The Riccati Equation
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
35.
Insperger
,
T.
,
Gradišek
,
J.
,
Kalveram
,
M.
,
Stépán
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
,
2006
, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
913
920
.
36.
Altintas
,
Y.
, and
Ber
,
A.
,
2001
, “
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,”
ASME Appl. Mech. Rev.
,
54
(
5
), pp.
B84
B84
.
37.
Benesty
,
J.
,
Chen
,
J.
,
Huang
,
Y.
, and
Cohen
,
I.
,
2009
,
Noise Reduction in Speech Processing
, Vol.
2
,
Springer
,
Berlin/Heidelberg
, pp.
1
4
.
38.
Mann
,
B. P.
,
Edes
,
B. T.
,
Easley
,
S. J.
,
Young
,
K. A.
, and
Ma
,
K.
,
2008
, “
Chatter Vibration and Surface Location Error Prediction for Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
350
361
.
You do not currently have access to this content.