Abstract

Carbon fiber-reinforced plastics (CFRP) composites are difficult-to-machine materials due to extensive tool wear. This article investigates the impact of carbon fiber types on tool wear in edge-trimming CFRPs, each with the ply angle of 0 deg, 45 deg, 90 deg, or 135 deg, using uncoated tungsten carbide endmills at the high spindle speed of 6000 rpm and the constant feed of 0.0508 mm/rev. Three distinct types of carbon fiber tows, including T300 as standard modulus (SM), IM-7 as intermediate modulus (IM), and K13312 as high modulus (HM), have been vacuum infused into CFRP laminates and edge trimmed to investigate wear characteristics. Three wear criteria measured are flank wear, edge rounding radii, and worn area. The results show that tool wear is influenced by carbon fiber properties, such as fiber tensile strength, tensile modulus, and fiber microstructure. Overall, IM carbon fibers with the highest tensile strength produced the most extensive tool wear due to the abrasive carbon fibers. Of four fiber directions, the largest tool wear was obtained from the 45 deg angle, while the lowest tool wear occurred in the 0 deg angle.

References

1.
Cunningham
,
C. R.
,
Shokrani
,
A.
, and
Dhokia
,
V.
,
2018
, “
Edge Trimming of Carbon Fibre Reinforced Plastic
,”
Procedia CIRP
,
77
, pp.
199
202
.
2.
Geier
,
N.
,
Davim
,
J. P.
, and
Szalay
,
T.
,
2019
, “
Advanced Cutting Tools and Technologies for Drilling Carbon Fibre Reinforced Polymer (CFRP) Composites: A Review
,”
Composites, Part A
,
125
, p.
UNSP 105552
.
3.
Li
,
C.
,
Mi
,
S.
,
An
,
Q.
,
Chen
,
M.
, and
Xu
,
J.
,
2018
, “
Study of Drilling-Induced Defects for CFRP Composites Using New Criteria
,”
Compos. Struct.
,
201
, pp.
1076
1087
.
4.
Chandramohan
,
D.
, and
Murali
,
B.
,
2014
, “
Machining of Composites—A Review
,”
Acad. J. Manuf. Eng.
,
12
(
3
), pp.
67
71
.
5.
Eneyew
,
E. D.
, and
Ramulu
,
M.
,
2014
, “
Experimental Study of Surface Quality and Damage When Drilling Unidirectional CFRP Composites
,”
J. Mater. Res. Technol.
,
3
(
4
), pp.
354
362
.
6.
Faraz
,
A.
,
Biermann
,
D.
, and
Weinert
,
K.
,
2009
, “
Cutting Edge Rounding: An Innovative Tool Wear Criterion in Drilling CFRP Composite Laminates
,”
Int. J. Mach. Tools Manuf.
,
49
(
15
), pp.
1185
1196
.
7.
Wang
,
X.
,
Kwon
,
P. Y.
,
Sturtvant
,
C.
,
Kim
,
D.
, and
Lantrip
,
J.
,
2013
, “
Tool Wear of Coated Drills in Drilling CFRP
,”
J. Manuf. Processes
,
15
(
1
), pp.
127
135
.
8.
Rawat
,
S.
, and
Attia
,
H.
,
2009
, “
Wear Mechanisms and Tool Life Management of WC–Co Drills During Dry High Speed Drilling of Woven Carbon Fibre Composites
,”
Wear
,
267
(
5–8
), pp.
1022
1030
.
9.
Henerichs
,
M.
,
Voß
,
R.
,
Kuster
,
F.
, and
Wegener
,
K.
,
2015
, “
Machining of Carbon Fiber Reinforced Plastics: Influence of Tool Geometry and Fiber Orientation on the Machining Forces
,”
CIRP J. Manuf. Sci. Technol.
,
9
, pp.
136
145
.
10.
Muhamad Khairussaleh
,
N. K.
,
Che Haron
,
C. H.
, and
Ghani
,
J. A.
,
2016
, “
Study on Wear Mechanism of Solid Carbide Cutting Tool in Milling CFRP
,”
J. Mater. Res.
,
31
(
13
), pp.
1893
1899
.
11.
Hagino
,
M.
, and
Inoue
,
T.
,
2013
, “
Effect of Carbon Fiber Orientation and Helix Angle on CFRP Cutting Characteristics by End-Milling
,”
Int. J. Autom. Technol.
,
7
(
3
), pp.
292
299
.
12.
Nguyen
,
D.
,
Bin Abdullah
,
M. S.
,
Khawarizmi
,
R.
,
Kim
,
D.
, and
Kwon
,
P.
,
2020
, “
The Effect of Fiber Orientation on Tool Wear in Edge-Trimming of Carbon Fiber Reinforced Plastics (CFRP) Laminates
,”
Wear
,
450–451
, p.
203213
.
13.
Merino-Pérez
,
J. L.
,
Royer
,
R.
,
Merson
,
E.
,
Lockwood
,
A.
,
Ayvar-Soberanis
,
S.
, and
Marshall
,
M. B.
,
2016
, “
Influence of Workpiece Constituents and Cutting Speed on the Cutting Forces Developed in the Conventional Drilling of CFRP Composites
,”
Compos. Struct.
,
140
, pp.
621
629
.
14.
Merino-Pérez
,
J. L.
,
Royer
,
R.
,
Ayvar-Soberanis
,
S.
,
Merson
,
E.
, and
Hodzic
,
A.
,
2015
, “
On the Temperatures Developed in CFRP Drilling Using Uncoated WC-Co Tools Part I: Workpiece Constituents, Cutting Speed and Heat Dissipation
,”
Compos. Struct.
,
123
, pp.
161
168
.
15.
Merino-Pérez
,
J. L.
,
Royer
,
R.
,
Ayvar-Soberanis
,
S.
,
Merson
,
E.
, and
Hodzic
,
A.
,
2015
, “
Induced Thermo-Mechanical Damage in the Drilling of Thermoplastic-Toughened CFRP Composites
,”
Proceedings of 20th International Conference on Composite Materials
,
Copenhagen, Denmark
,
July 19–24
, p.
12
.
16.
Pérez
,
J. L. M.
,
Merson
,
E.
,
Soberanis
,
S. A.
, and
Hodzic
,
A.
,
2014
, “
The Applicability of Taylor’s Model to the Drilling of CFRP Using Uncoated WC-Co Tools: The Influence of Cutting Speed on Tool Wear
,”
Int. J. Mach. Mach. Mater.
,
16
(
2
), p.
95
.
17.
Feito
,
N.
,
Diaz-Álvarez
,
A.
,
Cantero
,
J. L.
,
Rodríguez- Millán
,
M.
, and
Miguélez
,
H.
,
2016
, “
Experimental Analysis of Special Tool Geometries When Drilling Woven and Multidirectional CFRPs
,”
J. Reinf. Plast. Compos.
,
35
(
1
), pp.
33
55
.
18.
Xu
,
J.
,
An
,
Q.
,
Cai
,
X.
, and
Chen
,
M.
,
2013
, “
Drilling Machinability Evaluation on New Developed High-Strength T800S/250F CFRP Laminates
,”
Int. J. Precis. Eng. Manuf.
,
14
(
10
), pp.
1687
1696
.
19.
Chen
,
W.-C.
,
1997
, “
Some Experimental Investigations in the Drilling of Carbon Fiber-Reinforced Plastic (CFRP) Composite Laminates
,”
Int. J. Mach. Tools Manuf.
,
37
(
8
), pp.
1097
1108
.
20.
Chand
,
S.
,
2000
, “
Review Carbon Fibers for Composites
,”
J. Mater. Sci.
,
35
(
6
), pp.
1303
1313
.
21.
Huson
,
M. G.
,
2017
, “3—High-Performance Pitch-Based Carbon Fibers,”
Structure and Properties of High-Performance Fibers
,
G.
Bhat
, ed.,
Woodhead Publishing
,
Oxford
, pp.
31
78
.
22.
Morgan
,
P.
,
2005
,
Carbon Fibers and Their Composites
,
Taylor & Francis
,
London
.
23.
Naslain
,
R.
,
2000
, “Carbon Fibers From Pan and Pitch,”
Advanced Inorganic Fibers: Process—Structure—Properties—Applications
,
F. T.
Wallenberger
,
R.
Naslain
,
J. B.
Macchesney
,
H. D.
Ackler
, and
F. T.
Wallenberger
, eds.,
Springer US
,
Boston, MA
, pp.
233
264
.
24.
Inagaki
,
M.
,
2000
, “CHAPTER 4—Carbon Fibers,”
New Carbons—Control of Structure and Functions
,
M.
Inagaki
, ed.,
Elsevier Science
,
Oxford
, pp.
82
123
.
25.
Swan
,
S.
,
Yuksel
,
T.
,
Kim
,
D.
, and
Gurocak
,
H.
,
2017
, “
Automation of the Vacuum Assisted Resin Transfer Molding Process for Recreational Composite Yachts
,”
Polym. Compos.
,
38
(
11
), pp.
2411
2424
.
26.
Kim
,
S.-Y.
,
Shim
,
C. S.
,
Sturtevant
,
C.
,
Kim
,
D.
, and
Song
,
H. C.
,
2014
, “
Mechanical Properties and Production Quality of Hand-Layup and Vacuum Infusion Processed Hybrid Composite Materials for GFRP Marine Structures
,”
Int. J. Nav. Archit. Ocean Eng.
,
6
(
3
), pp.
723
736
.
27.
Hammami
,
A.
, and
Gebart
,
B. R.
,
2000
, “
Analysis of the Vacuum Infusion Molding Process
,”
Polym. Compos.
,
21
(
1
), pp.
28
40
.
28.
Ahmad
,
J.
,
2009
, “Introduction to Polymer Composites,”
Machining of Polymer Composites
,
J
Ahmad
, ed.,
Springer US
,
Boston, MA
, pp.
1
35
.
29.
Toray Composite America Inc.
,
2018
, “
T300 Data Set
,” T300 Rev. 6 Technical Datasheet.
30.
Hexcel Corporation
,
2020
, “
IM7 HexTow DataSheet
,” CTA 351 NV20 Datasheet.
31.
Mitsubishi Rayon Co., Ltd.
,
2016
, “
Coal Tar Pitched Based Carbon Fiber DIALEAD—Datasheet
,” Technical Datasheet for Material Selection.
32.
Zitoune
,
R.
,
Krishnaraj
,
V.
,
Sofiane Almabouacif
,
B.
,
Collombet
,
F.
,
Sima
,
M.
, and
Jolin
,
A.
,
2012
, “
Influence of Machining Parameters and New Nano-Coated Tool on Drilling Performance of CFRP/Aluminium Sandwich
,”
Composites, Part B
,
43
(
3
), pp.
1480
1488
.
33.
Swan
,
S.
,
Bin Abdullah
,
M. S.
,
Kim
,
D.
,
Nguyen
,
D.
, and
Kwon
,
P.
,
2018
, “
Tool Wear of Advanced Coated Tools in Drilling of CFRP
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), pp.
111018
111018–10
.
34.
Nguyen
,
D.
,
Voznyuk
,
V.
,
Bin Abdullah
,
M. S.
,
Kim
,
D.
, and
Kwon
,
P. Y.
,
2019
, “
Tool Wear of Superhard Ceramic Coated Tools in Drilling of CFRP/Ti Stacks
,”
Conference Proceedings of MSEC 2019
,
Erie, PA
,
June 10–14
.
35.
Lasdon
,
L. S.
,
Waren
,
A. D.
,
Jain
,
A.
, and
Ratner
,
M.
,
1978
, “
Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming
,”
ACM Trans. Math. Softw.
,
4
(
1
), pp.
34
50
.
36.
Kwon
,
P.
, and
Kountanya
,
R.
,
1999
, “
Experimental Observations on Flank Wear in Machining Spherodized Plain Carbon Steels
,”
Tribol. Trans.
,
42
(
2
), pp.
265
272
.
37.
Flöck
,
J.
,
Friedrich
,
K.
, and
Yuan
,
Q.
,
1999
, “
On the Friction and Wear Behaviour of PAN- and Pitch-Carbon Fiber Reinforced PEEK Composites
,”
Wear
,
225–229
(Part 1), pp.
304
311
.
38.
Ramulu
,
M.
,
Kim
,
D.
, and
Choi
,
G.
,
2003
, “
Frequency Analysis and Characterization in Orthogonal Cutting of Glass Fiber Reinforced Composites
,”
Composites, Part A
,
34
(
10
), pp.
949
962
.
39.
Attia
,
H.
,
Sadek
,
A.
, and
Meshreki
,
M.
,
2012
, “High Speed Machining Processes for Fiber-Reinforced Composites,”
Machining Technology for Composite Materials: Principles and Practice
,
H.
Hocheng
, ed.,
Woodhead Publishing
, pp.
333
364
.
40.
Sheikh-Ahmad
,
J.
, and
Davim
,
J. P.
,
2012
, “5—Tool Wear in Machining Processes for Composites,”
Machining Technology for Composite Materials: Principles and Practice
,,
H.
Hocheng
, ed.,
Woodhead Publishing
, pp.
116
153
.
41.
Xie
,
Y.
,
Lu
,
L.
,
Hou
,
Z.
,
Tang
,
Y.
,
Miao
,
L.
, and
Liu
,
X.
,
2016
, “
Fracture Behavior of PAN-Based Carbon Fiber Tow in a Chopping Process on an Elastic Support
,”
Fibers Polym.
,
17
(
8
), pp.
1262
1268
.
You do not currently have access to this content.